Weighted partially orderd sets of finite type
We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2006
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157358 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Weighted partially orderd sets of finite type / O. Drozd-Koroleva // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 36–49. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157358 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573582019-06-21T01:26:44Z Weighted partially orderd sets of finite type Drozd-Koroleva, O. We define representations of weighted posets and construct for them reflection functors. Using this technique we prove that a weighted poset is of finite representation type if and only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with the positive roots of the Tits form. 2006 Article Weighted partially orderd sets of finite type / O. Drozd-Koroleva // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 36–49. — Бібліогр.: 12 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16G20, 16G60. http://dspace.nbuv.gov.ua/handle/123456789/157358 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We define representations of weighted posets and
construct for them reflection functors. Using this technique we
prove that a weighted poset is of finite representation type if and
only if its Tits form is weakly positive; then indecomposable representations are in one-to-one correspondence with the positive roots
of the Tits form. |
format |
Article |
author |
Drozd-Koroleva, O. |
spellingShingle |
Drozd-Koroleva, O. Weighted partially orderd sets of finite type Algebra and Discrete Mathematics |
author_facet |
Drozd-Koroleva, O. |
author_sort |
Drozd-Koroleva, O. |
title |
Weighted partially orderd sets of finite type |
title_short |
Weighted partially orderd sets of finite type |
title_full |
Weighted partially orderd sets of finite type |
title_fullStr |
Weighted partially orderd sets of finite type |
title_full_unstemmed |
Weighted partially orderd sets of finite type |
title_sort |
weighted partially orderd sets of finite type |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157358 |
citation_txt |
Weighted partially orderd sets of finite type / O. Drozd-Koroleva // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 2. — С. 36–49. — Бібліогр.: 12 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT drozdkorolevao weightedpartiallyorderdsetsoffinitetype |
first_indexed |
2023-05-20T17:51:50Z |
last_indexed |
2023-05-20T17:51:50Z |
_version_ |
1796154267104444416 |