Automorphisms of kaleidoscopical graphs
A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the g...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157366 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A regular connected graph Γ of degree s is called
kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome
points. The kaleidoscopical graphs can be considered as a graph
counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We
show also that every finitely generated group can be realized as the
group of automorphisms of some kaleidoscopical graphs. |
---|