Automorphisms of kaleidoscopical graphs

A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the g...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Protasov, I.V., Protasova, K.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157366
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157366
record_format dspace
spelling irk-123456789-1573662019-06-21T01:30:26Z Automorphisms of kaleidoscopical graphs Protasov, I.V. Protasova, K.D. A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We show also that every finitely generated group can be realized as the group of automorphisms of some kaleidoscopical graphs. 2007 Article Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05C15, 05C25. http://dspace.nbuv.gov.ua/handle/123456789/157366 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We show also that every finitely generated group can be realized as the group of automorphisms of some kaleidoscopical graphs.
format Article
author Protasov, I.V.
Protasova, K.D.
spellingShingle Protasov, I.V.
Protasova, K.D.
Automorphisms of kaleidoscopical graphs
Algebra and Discrete Mathematics
author_facet Protasov, I.V.
Protasova, K.D.
author_sort Protasov, I.V.
title Automorphisms of kaleidoscopical graphs
title_short Automorphisms of kaleidoscopical graphs
title_full Automorphisms of kaleidoscopical graphs
title_fullStr Automorphisms of kaleidoscopical graphs
title_full_unstemmed Automorphisms of kaleidoscopical graphs
title_sort automorphisms of kaleidoscopical graphs
publisher Інститут прикладної математики і механіки НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/157366
citation_txt Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT protasoviv automorphismsofkaleidoscopicalgraphs
AT protasovakd automorphismsofkaleidoscopicalgraphs
first_indexed 2023-05-20T17:52:32Z
last_indexed 2023-05-20T17:52:32Z
_version_ 1796154294883319808