Automorphisms of kaleidoscopical graphs
A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the g...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2007
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157366 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157366 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573662019-06-21T01:30:26Z Automorphisms of kaleidoscopical graphs Protasov, I.V. Protasova, K.D. A regular connected graph Γ of degree s is called kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome points. The kaleidoscopical graphs can be considered as a graph counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We show also that every finitely generated group can be realized as the group of automorphisms of some kaleidoscopical graphs. 2007 Article Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 05C15, 05C25. http://dspace.nbuv.gov.ua/handle/123456789/157366 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A regular connected graph Γ of degree s is called
kaleidoscopical if there is a (s + 1)-coloring of the set of its vertices such that every unit ball in Γ has no distinct monochrome
points. The kaleidoscopical graphs can be considered as a graph
counterpart of the Hamming codes. We describe the groups of automorphisms of kaleidoscopical trees and Hamming graphs. We
show also that every finitely generated group can be realized as the
group of automorphisms of some kaleidoscopical graphs. |
format |
Article |
author |
Protasov, I.V. Protasova, K.D. |
spellingShingle |
Protasov, I.V. Protasova, K.D. Automorphisms of kaleidoscopical graphs Algebra and Discrete Mathematics |
author_facet |
Protasov, I.V. Protasova, K.D. |
author_sort |
Protasov, I.V. |
title |
Automorphisms of kaleidoscopical graphs |
title_short |
Automorphisms of kaleidoscopical graphs |
title_full |
Automorphisms of kaleidoscopical graphs |
title_fullStr |
Automorphisms of kaleidoscopical graphs |
title_full_unstemmed |
Automorphisms of kaleidoscopical graphs |
title_sort |
automorphisms of kaleidoscopical graphs |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157366 |
citation_txt |
Automorphisms of kaleidoscopical graphs / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 125–129. — Бібліогр.: 1 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT protasoviv automorphismsofkaleidoscopicalgraphs AT protasovakd automorphismsofkaleidoscopicalgraphs |
first_indexed |
2023-05-20T17:52:32Z |
last_indexed |
2023-05-20T17:52:32Z |
_version_ |
1796154294883319808 |