Uncountably many non-isomorphic nilpotent real n-Lie algebras

There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for n-Lie algebras. In particular, for n...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Stitzinger, E., Williams, M.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157370
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Uncountably many non-isomorphic nilpotent real n-Lie algebras / E. Stitzinger, M.P. Williams // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 1. — С. 81–88. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157370
record_format dspace
spelling irk-123456789-1573702019-06-21T01:25:25Z Uncountably many non-isomorphic nilpotent real n-Lie algebras Stitzinger, E. Williams, M.P. There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for n-Lie algebras. In particular, for n ≥ 6, there are an uncountable number of non-isomorphic nilpotent real n-Lie algebras of dimension n + 4. 2006 Article Uncountably many non-isomorphic nilpotent real n-Lie algebras / E. Stitzinger, M.P. Williams // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 1. — С. 81–88. — Бібліогр.: 5 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 17A42. http://dspace.nbuv.gov.ua/handle/123456789/157370 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for n-Lie algebras. In particular, for n ≥ 6, there are an uncountable number of non-isomorphic nilpotent real n-Lie algebras of dimension n + 4.
format Article
author Stitzinger, E.
Williams, M.P.
spellingShingle Stitzinger, E.
Williams, M.P.
Uncountably many non-isomorphic nilpotent real n-Lie algebras
Algebra and Discrete Mathematics
author_facet Stitzinger, E.
Williams, M.P.
author_sort Stitzinger, E.
title Uncountably many non-isomorphic nilpotent real n-Lie algebras
title_short Uncountably many non-isomorphic nilpotent real n-Lie algebras
title_full Uncountably many non-isomorphic nilpotent real n-Lie algebras
title_fullStr Uncountably many non-isomorphic nilpotent real n-Lie algebras
title_full_unstemmed Uncountably many non-isomorphic nilpotent real n-Lie algebras
title_sort uncountably many non-isomorphic nilpotent real n-lie algebras
publisher Інститут прикладної математики і механіки НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/157370
citation_txt Uncountably many non-isomorphic nilpotent real n-Lie algebras / E. Stitzinger, M.P. Williams // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 1. — С. 81–88. — Бібліогр.: 5 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT stitzingere uncountablymanynonisomorphicnilpotentrealnliealgebras
AT williamsmp uncountablymanynonisomorphicnilpotentrealnliealgebras
first_indexed 2023-05-20T17:51:51Z
last_indexed 2023-05-20T17:51:51Z
_version_ 1796154267842641920