Uncountably many non-isomorphic nilpotent real n-Lie algebras
There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for n-Lie algebras. In particular, for n...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2006
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157370 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Uncountably many non-isomorphic nilpotent real n-Lie algebras / E. Stitzinger, M.P. Williams // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 1. — С. 81–88. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157370 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573702019-06-21T01:25:25Z Uncountably many non-isomorphic nilpotent real n-Lie algebras Stitzinger, E. Williams, M.P. There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater than or equal to 7. We extend an old technique, which applies to Lie algebras of dimension greater than or equal to 10, to find corresponding results for n-Lie algebras. In particular, for n ≥ 6, there are an uncountable number of non-isomorphic nilpotent real n-Lie algebras of dimension n + 4. 2006 Article Uncountably many non-isomorphic nilpotent real n-Lie algebras / E. Stitzinger, M.P. Williams // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 1. — С. 81–88. — Бібліогр.: 5 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 17A42. http://dspace.nbuv.gov.ua/handle/123456789/157370 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
There are an uncountable number of non-isomorphic nilpotent real Lie algebras for every dimension greater
than or equal to 7. We extend an old technique, which applies
to Lie algebras of dimension greater than or equal to 10, to find
corresponding results for n-Lie algebras. In particular, for n ≥ 6,
there are an uncountable number of non-isomorphic nilpotent real
n-Lie algebras of dimension n + 4. |
format |
Article |
author |
Stitzinger, E. Williams, M.P. |
spellingShingle |
Stitzinger, E. Williams, M.P. Uncountably many non-isomorphic nilpotent real n-Lie algebras Algebra and Discrete Mathematics |
author_facet |
Stitzinger, E. Williams, M.P. |
author_sort |
Stitzinger, E. |
title |
Uncountably many non-isomorphic nilpotent real n-Lie algebras |
title_short |
Uncountably many non-isomorphic nilpotent real n-Lie algebras |
title_full |
Uncountably many non-isomorphic nilpotent real n-Lie algebras |
title_fullStr |
Uncountably many non-isomorphic nilpotent real n-Lie algebras |
title_full_unstemmed |
Uncountably many non-isomorphic nilpotent real n-Lie algebras |
title_sort |
uncountably many non-isomorphic nilpotent real n-lie algebras |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157370 |
citation_txt |
Uncountably many non-isomorphic nilpotent real n-Lie algebras / E. Stitzinger, M.P. Williams // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 1. — С. 81–88. — Бібліогр.: 5 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT stitzingere uncountablymanynonisomorphicnilpotentrealnliealgebras AT williamsmp uncountablymanynonisomorphicnilpotentrealnliealgebras |
first_indexed |
2023-05-20T17:51:51Z |
last_indexed |
2023-05-20T17:51:51Z |
_version_ |
1796154267842641920 |