On the Amitsur property of radicals

The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Loi, N.V., Wiegandt, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157377
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked.