On the Amitsur property of radicals
The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, i...
Збережено в:
Дата: | 2006 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2006
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157377 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-157377 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1573772019-06-21T01:28:15Z On the Amitsur property of radicals Loi, N.V. Wiegandt, R. The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked. 2006 Article On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16N60. http://dspace.nbuv.gov.ua/handle/123456789/157377 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
The Amitsur property of a radical says that
the radical of a polynomial ring is again a polynomial ring. A
hereditary radical γ has the Amitsur property if and only if its
semisimple class is polynomially extensible and satisfies: f(x) ∈
γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved
that the generalized nil radical has the Amitsur property. In this
way the Amitsur property of a not necessarily hereditary normal
radical can be checked. |
format |
Article |
author |
Loi, N.V. Wiegandt, R. |
spellingShingle |
Loi, N.V. Wiegandt, R. On the Amitsur property of radicals Algebra and Discrete Mathematics |
author_facet |
Loi, N.V. Wiegandt, R. |
author_sort |
Loi, N.V. |
title |
On the Amitsur property of radicals |
title_short |
On the Amitsur property of radicals |
title_full |
On the Amitsur property of radicals |
title_fullStr |
On the Amitsur property of radicals |
title_full_unstemmed |
On the Amitsur property of radicals |
title_sort |
on the amitsur property of radicals |
publisher |
Інститут прикладної математики і механіки НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/157377 |
citation_txt |
On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ. |
series |
Algebra and Discrete Mathematics |
work_keys_str_mv |
AT loinv ontheamitsurpropertyofradicals AT wiegandtr ontheamitsurpropertyofradicals |
first_indexed |
2023-05-20T17:51:52Z |
last_indexed |
2023-05-20T17:51:52Z |
_version_ |
1796154275568549888 |