On the Amitsur property of radicals

The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Loi, N.V., Wiegandt, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2006
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157377
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157377
record_format dspace
spelling irk-123456789-1573772019-06-21T01:28:15Z On the Amitsur property of radicals Loi, N.V. Wiegandt, R. The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked. 2006 Article On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16N60. http://dspace.nbuv.gov.ua/handle/123456789/157377 en Algebra and Discrete Mathematics Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Amitsur property of a radical says that the radical of a polynomial ring is again a polynomial ring. A hereditary radical γ has the Amitsur property if and only if its semisimple class is polynomially extensible and satisfies: f(x) ∈ γ(A[x]) implies f(0) ∈ γ(A[x]). Applying this criterion, it is proved that the generalized nil radical has the Amitsur property. In this way the Amitsur property of a not necessarily hereditary normal radical can be checked.
format Article
author Loi, N.V.
Wiegandt, R.
spellingShingle Loi, N.V.
Wiegandt, R.
On the Amitsur property of radicals
Algebra and Discrete Mathematics
author_facet Loi, N.V.
Wiegandt, R.
author_sort Loi, N.V.
title On the Amitsur property of radicals
title_short On the Amitsur property of radicals
title_full On the Amitsur property of radicals
title_fullStr On the Amitsur property of radicals
title_full_unstemmed On the Amitsur property of radicals
title_sort on the amitsur property of radicals
publisher Інститут прикладної математики і механіки НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/157377
citation_txt On the Amitsur property of radicals / N.V. Loi, R. Wiegandt // Algebra and Discrete Mathematics. — 2006. — Vol. 5, № 3. — С. 92–100. — Бібліогр.: 9 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT loinv ontheamitsurpropertyofradicals
AT wiegandtr ontheamitsurpropertyofradicals
first_indexed 2023-05-20T17:51:52Z
last_indexed 2023-05-20T17:51:52Z
_version_ 1796154275568549888