Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts

This paper studies the ultrasonic vibration assisted lifting laser cladding technology. Firstly, the simulation model of ultrasonic vibration-enhanced Ni60 self-fluxing alloy powder coated with 45 steel substrate is established, and the variation law of temperature field and temperature gradient in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Che Lei, Sun Wenlei, Zhang Guan, Han Jiaxin
Формат: Стаття
Мова:English
Опубліковано: НТК «Інститут монокристалів» НАН України 2018
Назва видання:Functional Materials
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157421
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts / Che Lei, Sun Wenlei, Zhang Guan, Han Jiaxin // Functional Materials. — 2018. — Т. 25, № 4. — С. 809-817. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-157421
record_format dspace
spelling irk-123456789-1574212019-06-21T01:29:53Z Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts Che Lei Sun Wenlei Zhang Guan Han Jiaxin Technology This paper studies the ultrasonic vibration assisted lifting laser cladding technology. Firstly, the simulation model of ultrasonic vibration-enhanced Ni60 self-fluxing alloy powder coated with 45 steel substrate is established, and the variation law of temperature field and temperature gradient in ultrasonic vibration strengthening process are analyzed by using Ansys finite element analysis software. After that, the microstructure, microhardness and surface roughness of the cladding layer are compared with that of the cladding test blocks with and without ultrasonic vibration. The results show that as the ultrasonic frequency increases or the scanning speed decreases, the temperature increases everywhere along the Z-axis, and the temperature gradient from the cladding layer to the interface area decreases. Compared to the cladding layer without ultrasonic vibration, the microstructure of the cladding layer obtained by applying ultrasonic vibration is finer and denser due to the effect of ultrasonic cavitation, and the microhardness is increased by 1.37 times and the surface roughness is reduced by 36.6%. 2018 Article Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts / Che Lei, Sun Wenlei, Zhang Guan, Han Jiaxin // Functional Materials. — 2018. — Т. 25, № 4. — С. 809-817. — Бібліогр.: 10 назв. — англ. 1027-5495 DOI:https://doi.org/10.15407/fm25.04.809 http://dspace.nbuv.gov.ua/handle/123456789/157421 en Functional Materials НТК «Інститут монокристалів» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Technology
Technology
spellingShingle Technology
Technology
Che Lei
Sun Wenlei
Zhang Guan
Han Jiaxin
Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts
Functional Materials
description This paper studies the ultrasonic vibration assisted lifting laser cladding technology. Firstly, the simulation model of ultrasonic vibration-enhanced Ni60 self-fluxing alloy powder coated with 45 steel substrate is established, and the variation law of temperature field and temperature gradient in ultrasonic vibration strengthening process are analyzed by using Ansys finite element analysis software. After that, the microstructure, microhardness and surface roughness of the cladding layer are compared with that of the cladding test blocks with and without ultrasonic vibration. The results show that as the ultrasonic frequency increases or the scanning speed decreases, the temperature increases everywhere along the Z-axis, and the temperature gradient from the cladding layer to the interface area decreases. Compared to the cladding layer without ultrasonic vibration, the microstructure of the cladding layer obtained by applying ultrasonic vibration is finer and denser due to the effect of ultrasonic cavitation, and the microhardness is increased by 1.37 times and the surface roughness is reduced by 36.6%.
format Article
author Che Lei
Sun Wenlei
Zhang Guan
Han Jiaxin
author_facet Che Lei
Sun Wenlei
Zhang Guan
Han Jiaxin
author_sort Che Lei
title Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts
title_short Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts
title_full Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts
title_fullStr Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts
title_full_unstemmed Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts
title_sort research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts
publisher НТК «Інститут монокристалів» НАН України
publishDate 2018
topic_facet Technology
url http://dspace.nbuv.gov.ua/handle/123456789/157421
citation_txt Research on ultrasonic vibration assisted repair technology of high temperature and high pressure parts / Che Lei, Sun Wenlei, Zhang Guan, Han Jiaxin // Functional Materials. — 2018. — Т. 25, № 4. — С. 809-817. — Бібліогр.: 10 назв. — англ.
series Functional Materials
work_keys_str_mv AT chelei researchonultrasonicvibrationassistedrepairtechnologyofhightemperatureandhighpressureparts
AT sunwenlei researchonultrasonicvibrationassistedrepairtechnologyofhightemperatureandhighpressureparts
AT zhangguan researchonultrasonicvibrationassistedrepairtechnologyofhightemperatureandhighpressureparts
AT hanjiaxin researchonultrasonicvibrationassistedrepairtechnologyofhightemperatureandhighpressureparts
first_indexed 2023-05-20T17:52:23Z
last_indexed 2023-05-20T17:52:23Z
_version_ 1796154297328599040