Methods for derivation of the stochastic Boltzmann hierarchy

We consider different methods for the derivation of the stochastic Boltzmann hierarchy corresponding to the stochastic dynamics that is the Boltzmann-Grad limit of the Hamiltonian dynamics of hard spheres. Solutions of the stochastic Boltzmann hierarchy are the Boltzmann-Grad limit of solutions of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2000
Автор: Petrina, D.Ya.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2000
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157605
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Methods for derivation of the stochastic Boltzmann hierarchy / D.Ya. Petrina // Український математичний журнал. — 2000. — Т. 52, № 4. — С. 474–491. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider different methods for the derivation of the stochastic Boltzmann hierarchy corresponding to the stochastic dynamics that is the Boltzmann-Grad limit of the Hamiltonian dynamics of hard spheres. Solutions of the stochastic Boltzmann hierarchy are the Boltzmann-Grad limit of solutions of the BBGKY hierarchy of hard spheres in the entire phase space. A new concept of reduced distribution functions corresponding to the stochastic dynamics are introduced. They take into account the contribution of the hyperplanes of lower dimension where stochastic point particles interact with one another. The solutions of the Boltzmann equation coincide with one-particle distribution functions of the stochastic Boltzmann hierarchy and are represented by integrals over the hyperplanes where the stochastic point particles interact with one another.