Дискретность решеток замкнутых подгрупп групп Ли
Доказана теорема. Пусть G — произвольная группа Ли, H — ее замкнутая подгруппа. Тогда существует такая окрестность Ω единицы группы G, что множество HΩ не содержит замкнутых подгрупп, строго больших H. Отсюда следует справедливость гипотезы Протасова (см. [1])....
Збережено в:
Дата: | 1985 |
---|---|
Автор: | Кабенюк, М.И. |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1985
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/157818 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Дискретность решеток замкнутых подгрупп групп Ли / М.И. Кабенюк // Український математичний журнал. — 1985. — Т. 37, № 4. — С. 492–494. — Бібліогр.: 2 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
О τ-замкнутых формациях n-арных групп
за авторством: Аль-Дабабсех Авни Файез
Опубліковано: (2001) -
O модулярности решетки τ-замкнутых тотально насыщенных формаций конечных групп
за авторством: Сафонов, В.Г.
Опубліковано: (2006) -
Спектральные разложения некоторых представлений групп Ли
за авторством: Виленкин, Н.Я., та інші
Опубліковано: (1990) -
Группы с условием N-инвариантности для нециклических подгрупп
за авторством: Марач, В.С.
Опубліковано: (1984) -
Достаточные условия дополняемости максимальных циклических подгрупп в конечной 2-группе
за авторством: Крекнин, В.А., та інші
Опубліковано: (1994)