Алгебраические коэффициентные условия абсолютной (не зависящей от запаздывания) асимптотической устойчивости с вероятностью 1 решений систем линейных стохастических уравнений Ито с последействием

Получены алгебраические коэффициентные условия асимптотической устойчивости с вероятностью I решений систем линейных стохастических дифференциальных уравнений Ито с постоянным запаздыванием аргумента, не зависящие от величины запаздывания (условия абсолютной устойчивости). Предполагается, что при от...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1985
Автор: Кореневский, Д.Г.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 1985
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/157881
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Алгебраические коэффициентные условия абсолютной (не зависящей от запаздывания) асимптотической устойчивости с вероятностью 1 решений систем линейных стохастических уравнений Ито с последействием / Д.Г. Кореневский // Український математичний журнал. — 1985. — Т. 37, № 6. — С. 791–795. — Бібліогр.: 8 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Получены алгебраические коэффициентные условия асимптотической устойчивости с вероятностью I решений систем линейных стохастических дифференциальных уравнений Ито с постоянным запаздыванием аргумента, не зависящие от величины запаздывания (условия абсолютной устойчивости). Предполагается, что при отсутствии случайных членов (случайных параметрических возмущений) невозмущенная, детерминированная система дифференциальных уравнений с запаздыванием асимптотически устойчива по Ляпунову при любом постоянном запаздывании (абсолютно устойчива). Условия абсолютной устойчивости выражены в терминах некоторого матричного неравенства для матриц, входящих м систему уравнений. Используется метод квадратичных стохастических функционалов Ляпунова—Красовского, матрица квадратичных форм которых согласована с матрицей невозмущениой системы. Рассмотрен случай скалярного винеровского процесса и одного постоянного отклонения аргумента.