On the units of integral group ring of Cn × C₆
There are many kind of open problems withvarying difficulty on units in a given integral group ring. In thisnote, we characterize the unit group of the integral group ring of Cn × C₆ where Cn = 〈a: aⁿ = 1〉 and C₆ = 〈x: x⁶ = 1〉. We show that U₁(Z[Cn × C₆]) can be expressed in terms of its 4 subgroups...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/158005 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the units of integral group ring of Cn × C₆ / Ö. Küsmüş // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 142–151. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | There are many kind of open problems withvarying difficulty on units in a given integral group ring. In thisnote, we characterize the unit group of the integral group ring of Cn × C₆ where Cn = 〈a: aⁿ = 1〉 and C₆ = 〈x: x⁶ = 1〉. We show that U₁(Z[Cn × C₆]) can be expressed in terms of its 4 subgroups. Furthermore, forms of units in these subgroups are described by the unit group U₁(ZCn). |
---|