On algebraic graph theory and non-bijectivemultivariate maps in cryptography
Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n = 2,3, ... and composite m.The map F is injective on Ωn = {x|x1+x2+: : : xn ∈ Zm*} and solution of the equation Fn(x) = b, x ∈ Ωn can be reduced to the solution of equation zr = α, z ∈ Zm*, (r, φ(m)) = 1. Th...
Збережено в:
Дата: | 2015 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут прикладної математики і механіки НАН України
2015
|
Назва видання: | Algebra and Discrete Mathematics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/158006 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On algebraic graph theory and non-bijectivemultivariate maps in cryptography / V. Ustimenko // Algebra and Discrete Mathematics. — 2015. — Vol. 20, № 1. — С. 152–170. — Бібліогр.: 33 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Special family of non-bijective multivariate maps Fn of Zmⁿ into itself is constructed for n = 2,3, ... and composite m.The map F is injective on Ωn = {x|x1+x2+: : : xn ∈ Zm*} and solution of the equation Fn(x) = b, x ∈ Ωn can be reduced to the solution of equation zr = α, z ∈ Zm*, (r, φ(m)) = 1. The “hidden RSA cryptosystem” is proposed. Similar construction is suggested for the case Ωn = Zm*ⁿ. |
---|