Sensitivity of Colding tool life equation on the dimensions of experimental dataset
In this work, 22 sets of cutting data and tool life for longitudinal turning of steel are analyzed using the Colding equation. When modeling tool life with a limited number of tool performance data points, the model error may be low for these points. Evaluating the model for test points not used whe...
Збережено в:
Дата: | 2017 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут надтвердих матеріалів ім. В.М. Бакуля НАН України
2017
|
Назва видання: | Сверхтвердые материалы |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/160146 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Sensitivity of Colding tool life equation on the dimensions of experimental dataset / D. Johansson, S. Hägglund, V. Bushlya, J.-E. Ståhl // Сверхтвердые материалы. — 2017. — № 4. — С. 67-79. — Бібліогр.: 14 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this work, 22 sets of cutting data and tool life for longitudinal turning of steel are analyzed using the Colding equation. When modeling tool life with a limited number of tool performance data points, the model error may be low for these points. Evaluating the model for test points not used when computing the model coefficients may give larger errors for these points. This work proves that the Colding model also provides sufficient precision when modelling data points not being used to create the model, and is therefore a well-functioning instrument for tool life modelling. The results also prove that for the selected data, the precision of the model can be greatly improved when the dimension of the data set is increased from 5 to 10 data points. Above 13 data points the precision improvements are negligible. |
---|