Аналітика великих даних: принципи, напрямки і задачі (огляд)
Висвітлено основні напрямки, задачі та типи результатів глибокого аналізу великих (комп'ютеризованих) даних. Показано практичне значення великих даних та великої аналітики як фундаменту створення нових комп'ютерних технологій планування і керування у бізнесі. Виділено специфічні для велики...
Збережено в:
Дата: | 2019 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут програмних систем НАН України
2019
|
Назва видання: | Проблеми програмування |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/161487 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Аналітика великих даних: принципи, напрямки і задачі (огляд) / О.С. Балабанов // Проблеми програмування. — 2019. — № 2. — С. 47-68. — Бібліогр.: 60 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Висвітлено основні напрямки, задачі та типи результатів глибокого аналізу великих (комп'ютеризованих) даних. Показано практичне значення великих даних та великої аналітики як фундаменту створення нових комп'ютерних технологій планування і керування у бізнесі. Виділено специфічні для великих даних режими використання даних (або роди завдань аналізу): «інтелектуальний» пошук потрібної інформації; масована переробка («відпрацювання») даних; індукція моделі об'єкту (середовища); екстракція знань з даних (відкриття структур і закономірностей). Окреслено етапи і організацію циклу робіт з аналізу даних. До типових класів задач великої аналітики належать: групування випадків (кластеризація); виведення цілевизначених моделей (класифікація, регресія, розпізнавання); виведення генеративних моделей; відкриття структур і закономірностей. Охарактеризовано особливості «глибокого навчання» та фактори його популярності. Виділено каузальні мережі як клас моделей, які поєднують у собі переваги генеративних, цілевизначених та багатоцільових моделей і відрізняються тим, що придатні для прогнозу ефектів керування (втручання). Вказано шість «опор», на яких будується методологічне ядро великої аналітики. |
---|