On the relation between Fourier and Leont’ev coefficients with respect to Smirnov spaces

Yu. Mel’nik showed that the Leont’ev coefficients Κ f (λ) in the Dirichlet series 2n/(n+1)<p>2 of a function f ∈E p (D), 1 < p < ∞, are the Fourier coefficients of some function F ∈L p , ([0, 2π]) and that the first modulus of continuity of F can be estimated by the first moduli and m...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автор: Forster, B.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2004
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/163637
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the relation between Fourier and Leont’ev coefficients with respect to Smirnov spaces / B. Forster // Український математичний журнал. — 2004. — Т. 56, № 4. — С. 517–526. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Yu. Mel’nik showed that the Leont’ev coefficients Κ f (λ) in the Dirichlet series 2n/(n+1)<p>2 of a function f ∈E p (D), 1 < p < ∞, are the Fourier coefficients of some function F ∈L p , ([0, 2π]) and that the first modulus of continuity of F can be estimated by the first moduli and majorants in f. In the present paper, we extend his results to moduli of arbitrary order.