On the relation between Fourier and Leont’ev coefficients with respect to Smirnov spaces
Yu. Mel’nik showed that the Leont’ev coefficients Κ f (λ) in the Dirichlet series 2n/(n+1)<p>2 of a function f ∈E p (D), 1 < p < ∞, are the Fourier coefficients of some function F ∈L p , ([0, 2π]) and that the first modulus of continuity of F can be estimated by the first moduli and m...
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2004
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/163637 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the relation between Fourier and Leont’ev coefficients with respect to Smirnov spaces / B. Forster // Український математичний журнал. — 2004. — Т. 56, № 4. — С. 517–526. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Yu. Mel’nik showed that the Leont’ev coefficients Κ f (λ) in the Dirichlet series 2n/(n+1)<p>2 of a function f ∈E p (D), 1 < p < ∞, are the Fourier coefficients of some function F ∈L p , ([0, 2π]) and that the first modulus of continuity of F can be estimated by the first moduli and majorants in f. In the present paper, we extend his results to moduli of arbitrary order. |
---|