Spatially-Homogeneous Boltzmann Hierarchy as Averaged Spatially-Inhomogeneous Stochastic Boltzmann Hierarchy

We introduce the stochastic dynamics in the phase space that corresponds to the Boltzmann equation and hierarchy and is the Boltzmann–Grad limit of the Hamiltonian dynamics of systems of hard spheres. By the method of averaging over the space of positions, we derive from it the stochastic dynamics i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Lampis, M., Petrina, D.Ya.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2002
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/163703
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spatially-Homogeneous Boltzmann Hierarchy as Averaged Spatially-Inhomogeneous Stochastic Boltzmann Hierarchy / M. Lampis, D.Ya. Petrina // Український математичний журнал. — 2002. — Т. 54, № 1. — С. 78–93. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We introduce the stochastic dynamics in the phase space that corresponds to the Boltzmann equation and hierarchy and is the Boltzmann–Grad limit of the Hamiltonian dynamics of systems of hard spheres. By the method of averaging over the space of positions, we derive from it the stochastic dynamics in the momentum space that corresponds to the space-homogeneous Boltzmann equation and hierarchy. Analogous dynamics in the mean-field approximation was postulated by Kac for the explanation of the phenomenon of propagation of chaos and derivation of the Boltzmann equation. This is a preview of subscription content, log in to check access.