Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems
A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Bå...
Збережено в:
Дата: | 2004 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2004
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/163786 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Lie-algebraic structure of (2 + 1)-dimensional Lax-type integrable nonlinear dynamical systems / A.K. Prykarpatsky, O.Ye. Hentosh // Український математичний журнал. — 2004. — Т. 56, № 7. — С. 939–946. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A Hamiltonian representation for a hierarchy of Lax-type equations on a dual space to the Lie algebra of integro-differential operators with matrix coefficients extended by evolutions for eigenfunctions and adjoint eigenfunctions of the corresponding spectral problems is obtained via some special Båcklund transformation. The connection of this hierarchy with Lax-integrable two-metrizable systems is studied. |
---|