Побудова нарізно неперервних функцій з даним звуженням

Розв'язано задачу про побудову нарізно неперервних функцій на добутку двох топологічних просторів із даним звуженням. Зокрема, показано, що для довільних топологічного простору X і функції g:X→R першого класу Бера існує нарізно неперервна функція f:X×X→R така, що f(x,x)=g(x) для кожного х∈X....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Михайлюк, В.В.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2003
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/163899
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Побудова нарізно неперервних функцій з даним звуженням / В.В. Михайлюк // Український математичний журнал. — 2003. — Т. 55, № 5. — С. 716–721. — Бібліогр.: 7 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розв'язано задачу про побудову нарізно неперервних функцій на добутку двох топологічних просторів із даним звуженням. Зокрема, показано, що для довільних топологічного простору X і функції g:X→R першого класу Бера існує нарізно неперервна функція f:X×X→R така, що f(x,x)=g(x) для кожного х∈X.