О решении краевой задачи для уравнения третьего порядка с кратными характеристиками
Для рiвняння третього порядку з кратними характеристиками uxxx − uyy = f(x, y) в областi D = {(x, y): 0 < x < p, 0 < y < l} дослiджено першу крайову задачу. Єдинiсть розв’язку цiєї задачi доведено методом iнтегралiв енергiї, а розв’язок в явному виглядi отримано за допомогою функцiї Грiн...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | Апаков, Ю.П. |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/163981 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О решении краевой задачи для уравнения третьего порядка с кратными характеристиками / Ю.П. Апаков // Український математичний журнал. — 2012. — Т. 64, № 1. — С. 3-13. — Бібліогр.: 13 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineСхожі ресурси
-
К теории уравнения третьего порядка с кратными характеристиками, содержащего вторую производную по времени
за авторством: Апаков, Ю.П., та інші
Опубліковано: (2010) -
Аналог задачи Бицадзе — Самарского для одного уравнения третьего порядка смешанного типа
за авторством: Базаров, Д.
Опубліковано: (1987) -
О нелокальной краевой задаче для уравнения четвертого порядка
за авторством: Маловичко, В.А.
Опубліковано: (1986) -
О гладкости обобщенных решений третьей краевой задачи для эллиптического дифференциально-разностного уравнения
за авторством: Цветков, Е.Л.
Опубліковано: (1993) -
О регулярности обобщенных решений третьей краевой задачи для эллиптического дифференциально-разностного уравнения
за авторством: Цветков, Е.Л.
Опубліковано: (1995)