Generalized de Rham – Hodge complexes, the related characteristic Chern classes and some applications to integrable multidimensional differential systems on Riemannian manifolds

The differential-geometric aspects of generalized de Rham – Hodge complexes naturally related with integrable multidimensional differential systems of M. Gromov type, as well as the geometric structure of Chern characteristic classes are studied. Special differential invariants of the Chern type ar...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Bogolubov, N.N., Prykarpatsky, A.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2007
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164024
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized de Rham – Hodge complexes, the related characteristic Chern classes and some applications to integrable multidimensional differential systems on Riemannian manifolds / N.N. Bogolubov, A.K. Prykarpatsky // Український математичний журнал. — 2007. — Т. 59, № 3. — С. 327–344. — Бібліогр.: 38 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The differential-geometric aspects of generalized de Rham – Hodge complexes naturally related with integrable multidimensional differential systems of M. Gromov type, as well as the geometric structure of Chern characteristic classes are studied. Special differential invariants of the Chern type are constructed, their importance for the integrability of multidimensional nonlinear differential systems on Riemannian manifolds is discussed. An example of the three-dimensional Davey – Stewartson type nonlinear integrable differential system is considered, its Cartan type connection mapping and related Chern type differential invariants are analized.