Generalized de Rham – Hodge complexes, the related characteristic Chern classes and some applications to integrable multidimensional differential systems on Riemannian manifolds
The differential-geometric aspects of generalized de Rham – Hodge complexes naturally related with integrable multidimensional differential systems of M. Gromov type, as well as the geometric structure of Chern characteristic classes are studied. Special differential invariants of the Chern type ar...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2007
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164024 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized de Rham – Hodge complexes, the related characteristic Chern classes and some applications to integrable multidimensional differential systems on Riemannian manifolds / N.N. Bogolubov, A.K. Prykarpatsky // Український математичний журнал. — 2007. — Т. 59, № 3. — С. 327–344. — Бібліогр.: 38 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The differential-geometric aspects of generalized de Rham – Hodge complexes naturally related with integrable
multidimensional differential systems of M. Gromov type, as well as the geometric structure of Chern characteristic classes are studied. Special differential invariants of the Chern type are constructed, their importance for the
integrability of multidimensional nonlinear differential systems on Riemannian manifolds is discussed. An example of the three-dimensional Davey – Stewartson type nonlinear integrable differential system is considered,
its Cartan type connection mapping and related Chern type differential invariants are analized. |
---|