О модифицированном сильном двоичном интеграле и производной
Для функцій f∈L(R₊) визначено модифікований сильний двійковий інтеграл J(f)∈L(R₊) та модифіковану сильну двійкову похідну D(f)∈L(R₊). Отримано необхідну та достатню умову існування модифікованої о сильного двійкового інтеграла J(f) . За умови ∫R₊f(x)dx=0 доведено рівності J(D(f))=f та D(J(f))=f. Зна...
Збережено в:
Дата: | 2002 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2002
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164034 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О модифицированном сильном двоичном интеграле и производной / Б.И. Голубов // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 628–638. — Бібліогр.: 15 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Для функцій f∈L(R₊) визначено модифікований сильний двійковий інтеграл J(f)∈L(R₊) та модифіковану сильну двійкову похідну D(f)∈L(R₊). Отримано необхідну та достатню умову існування модифікованої о сильного двійкового інтеграла J(f) . За умови ∫R₊f(x)dx=0 доведено рівності J(D(f))=f та D(J(f))=f. Знайдено зліченну множину власних функцій операторів J та D. Доведено, що лінійна оболонка L цієї множини є щільною у двійковому просторі Харді H(R₊). Для функцій f∈H(R₊) означено модифікований рівномірний двійковий інтеграл J(f)∈L∞(R₊). |
---|