Приближения интегралов типа Коши
Досліджуються наближення аналітичних функцій, заданих інтегралами типу Коші в жорданових областях комплексної площини. Результати, одержані авторами раніше, набувають подальшого розвитку і модернізації та в певному розумінні завершеності. Важливе значення надається дослідженню наближень сумами Тейло...
Збережено в:
Дата: | 2002 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2002
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164054 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Приближения интегралов типа Коши / В.В. Савчук, А.И. Степанец // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 706–740. — Бібліогр.: 15 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-164054 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1640542020-02-09T01:27:04Z Приближения интегралов типа Коши Савчук, В.В. Степанец, А.И. Статті Досліджуються наближення аналітичних функцій, заданих інтегралами типу Коші в жорданових областях комплексної площини. Результати, одержані авторами раніше, набувають подальшого розвитку і модернізації та в певному розумінні завершеності. Важливе значення надається дослідженню наближень сумами Тейлора функцій, аналітичних у крузі. Зокрема, знаходяться асимптотичні рівності для верхніх меж відхилень сум Тейлора на класах ψ-інтегралів функцій, аналітичних в одиничному крузі та неперервних в його замиканні. Ці рівності є узагальненням відомих результатів С. Б. Стєчкіна про наближення аналітичних в одиночному крузі функцій з обмеженими r-ми ( r— натуральне) похідними. На основі результатів, отриманих для круга, знаходяться поточкові оцінки відхилень час- тинних сум рядів Фабера на класах ψ-інтегралів функцій, аналітичних в областях зі спрямлюваними жордановими межами. Показано, що ці оцінки в замкненій області є точними за порядком і точними в розумінні констант при головних членах тоді і лише тоді, коли область є фаберовою. We investigate approximations of analytic functions determined by Cauchy-type integrals in Jordan domains of the complex plane. We develop, modify, and complete (in a certain sense) our earlier results. Special attention is given to the investigation of approximation of functions analytic in a disk by Taylor sums. In particular, we obtain asymptotic equalities for upper bounds of the deviations of Taylor sums on the classes of ψ-integrals of functions analytic in the unit disk and continuous in its closure. These equalities are a generalization of the known Stechkin's results on the approximation of functions analytic in the unit disk and having bounded rth derivatives (here, r is a natural number). On the basis of the results obtained for a disk, we establish pointwise estimates for the deviations of partial Faber sums on the classes of ψ-integrals of functions analytic in domains with rectifiable Jordan boundaries. We show that, for a closed domain, these estimates are exact in order and exact in the sense of constants with leading terms if and only if this domain is a Faber domain. 2002 Article Приближения интегралов типа Коши / В.В. Савчук, А.И. Степанец // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 706–740. — Бібліогр.: 15 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164054 517.5 ru Український математичний журнал Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Статті Статті |
spellingShingle |
Статті Статті Савчук, В.В. Степанец, А.И. Приближения интегралов типа Коши Український математичний журнал |
description |
Досліджуються наближення аналітичних функцій, заданих інтегралами типу Коші в жорданових областях комплексної площини. Результати, одержані авторами раніше, набувають подальшого розвитку і модернізації та в певному розумінні завершеності. Важливе значення надається дослідженню наближень сумами Тейлора функцій, аналітичних у крузі. Зокрема, знаходяться асимптотичні рівності для верхніх меж відхилень сум Тейлора на класах ψ-інтегралів функцій, аналітичних в одиничному крузі та неперервних в його замиканні. Ці рівності є узагальненням відомих результатів С. Б. Стєчкіна про наближення аналітичних в одиночному крузі функцій з обмеженими r-ми ( r— натуральне) похідними. На основі результатів, отриманих для круга, знаходяться поточкові оцінки відхилень час- тинних сум рядів Фабера на класах ψ-інтегралів функцій, аналітичних в областях зі спрямлюваними жордановими межами. Показано, що ці оцінки в замкненій області є точними за порядком і точними в розумінні констант при головних членах тоді і лише тоді, коли область є фаберовою. |
format |
Article |
author |
Савчук, В.В. Степанец, А.И. |
author_facet |
Савчук, В.В. Степанец, А.И. |
author_sort |
Савчук, В.В. |
title |
Приближения интегралов типа Коши |
title_short |
Приближения интегралов типа Коши |
title_full |
Приближения интегралов типа Коши |
title_fullStr |
Приближения интегралов типа Коши |
title_full_unstemmed |
Приближения интегралов типа Коши |
title_sort |
приближения интегралов типа коши |
publisher |
Інститут математики НАН України |
publishDate |
2002 |
topic_facet |
Статті |
url |
http://dspace.nbuv.gov.ua/handle/123456789/164054 |
citation_txt |
Приближения интегралов типа Коши / В.В. Савчук, А.И. Степанец // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 706–740. — Бібліогр.: 15 назв. — рос. |
series |
Український математичний журнал |
work_keys_str_mv |
AT savčukvv približeniâintegralovtipakoši AT stepanecai približeniâintegralovtipakoši |
first_indexed |
2023-10-18T22:12:42Z |
last_indexed |
2023-10-18T22:12:42Z |
_version_ |
1796154924292112384 |