Приближения интегралов типа Коши

Досліджуються наближення аналітичних функцій, заданих інтегралами типу Коші в жорданових областях комплексної площини. Результати, одержані авторами раніше, набувають подальшого розвитку і модернізації та в певному розумінні завершеності. Важливе значення надається дослідженню наближень сумами Тейло...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Савчук, В.В., Степанец, А.И.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2002
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164054
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Приближения интегралов типа Коши / В.В. Савчук, А.И. Степанец // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 706–740. — Бібліогр.: 15 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164054
record_format dspace
spelling irk-123456789-1640542020-02-09T01:27:04Z Приближения интегралов типа Коши Савчук, В.В. Степанец, А.И. Статті Досліджуються наближення аналітичних функцій, заданих інтегралами типу Коші в жорданових областях комплексної площини. Результати, одержані авторами раніше, набувають подальшого розвитку і модернізації та в певному розумінні завершеності. Важливе значення надається дослідженню наближень сумами Тейлора функцій, аналітичних у крузі. Зокрема, знаходяться асимптотичні рівності для верхніх меж відхилень сум Тейлора на класах ψ-інтегралів функцій, аналітичних в одиничному крузі та неперервних в його замиканні. Ці рівності є узагальненням відомих результатів С. Б. Стєчкіна про наближення аналітичних в одиночному крузі функцій з обмеженими r-ми ( r— натуральне) похідними. На основі результатів, отриманих для круга, знаходяться поточкові оцінки відхилень час- тинних сум рядів Фабера на класах ψ-інтегралів функцій, аналітичних в областях зі спрямлюваними жордановими межами. Показано, що ці оцінки в замкненій області є точними за порядком і точними в розумінні констант при головних членах тоді і лише тоді, коли область є фаберовою. We investigate approximations of analytic functions determined by Cauchy-type integrals in Jordan domains of the complex plane. We develop, modify, and complete (in a certain sense) our earlier results. Special attention is given to the investigation of approximation of functions analytic in a disk by Taylor sums. In particular, we obtain asymptotic equalities for upper bounds of the deviations of Taylor sums on the classes of ψ-integrals of functions analytic in the unit disk and continuous in its closure. These equalities are a generalization of the known Stechkin's results on the approximation of functions analytic in the unit disk and having bounded rth derivatives (here, r is a natural number). On the basis of the results obtained for a disk, we establish pointwise estimates for the deviations of partial Faber sums on the classes of ψ-integrals of functions analytic in domains with rectifiable Jordan boundaries. We show that, for a closed domain, these estimates are exact in order and exact in the sense of constants with leading terms if and only if this domain is a Faber domain. 2002 Article Приближения интегралов типа Коши / В.В. Савчук, А.И. Степанец // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 706–740. — Бібліогр.: 15 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164054 517.5 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Савчук, В.В.
Степанец, А.И.
Приближения интегралов типа Коши
Український математичний журнал
description Досліджуються наближення аналітичних функцій, заданих інтегралами типу Коші в жорданових областях комплексної площини. Результати, одержані авторами раніше, набувають подальшого розвитку і модернізації та в певному розумінні завершеності. Важливе значення надається дослідженню наближень сумами Тейлора функцій, аналітичних у крузі. Зокрема, знаходяться асимптотичні рівності для верхніх меж відхилень сум Тейлора на класах ψ-інтегралів функцій, аналітичних в одиничному крузі та неперервних в його замиканні. Ці рівності є узагальненням відомих результатів С. Б. Стєчкіна про наближення аналітичних в одиночному крузі функцій з обмеженими r-ми ( r— натуральне) похідними. На основі результатів, отриманих для круга, знаходяться поточкові оцінки відхилень час- тинних сум рядів Фабера на класах ψ-інтегралів функцій, аналітичних в областях зі спрямлюваними жордановими межами. Показано, що ці оцінки в замкненій області є точними за порядком і точними в розумінні констант при головних членах тоді і лише тоді, коли область є фаберовою.
format Article
author Савчук, В.В.
Степанец, А.И.
author_facet Савчук, В.В.
Степанец, А.И.
author_sort Савчук, В.В.
title Приближения интегралов типа Коши
title_short Приближения интегралов типа Коши
title_full Приближения интегралов типа Коши
title_fullStr Приближения интегралов типа Коши
title_full_unstemmed Приближения интегралов типа Коши
title_sort приближения интегралов типа коши
publisher Інститут математики НАН України
publishDate 2002
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164054
citation_txt Приближения интегралов типа Коши / В.В. Савчук, А.И. Степанец // Український математичний журнал. — 2002. — Т. 54, № 5. — С. 706–740. — Бібліогр.: 15 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT savčukvv približeniâintegralovtipakoši
AT stepanecai približeniâintegralovtipakoši
first_indexed 2023-10-18T22:12:42Z
last_indexed 2023-10-18T22:12:42Z
_version_ 1796154924292112384