A result on generalized derivations on right ideals of prime rings
Let R be a prime ring of characteristic other than 2 and let I be a nonzero right ideal of R. Also let U be the right Utumi quotient ring of R and let C be the center of U. If G is a generalized derivation of R such that [[G(x), x], G(x)] = 0 for all x ∈ I, then R is commutative or there exist a, b...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164134 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A result on generalized derivations on right ideals of prime rings / C. Demir, N. Arga // Український математичний журнал. — 2012. — Т. 64, № 2. — С. 165-175. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let R be a prime ring of characteristic other than 2 and let I be a nonzero right ideal of R. Also let U be the right Utumi quotient ring of R and let C be the center of U. If G is a generalized derivation of R such that [[G(x), x], G(x)] = 0 for all x ∈ I, then R is commutative or there exist a, b ∈ U such that G(x) = ax + xb for all x ∈ R and one of the following assertions is true:
(1) (a - λ)I = (0) = (b + λ)I for some λ ∈ C,
(2) (a - λ)I = (0) for some λ ∈ C and b ∈ C. |
---|