On equalities involving integrals of the logarithm of the Riemann ζ-function and equivalent to the Riemann hypothesis

By using the generalized Littlewood theorem about a contour integral involving the logarithm of an analytic function, we show how an infinite number of integral equalities involving integrals of the logarithm of the Riemann ζ-function and equivalent to the Riemann hypothesis can be established and p...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Sekatskii, S.K., Beltraminelli, S., Merlini, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164138
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On equalities involving integrals of the logarithm of the Riemann ζ-function and equivalent to the Riemann hypothesis / S.K. Sekatskii, S. Beltraminelli, D. Merlini // Український математичний журнал. — 2012. — Т. 64, № 2. — С. 218-228. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:By using the generalized Littlewood theorem about a contour integral involving the logarithm of an analytic function, we show how an infinite number of integral equalities involving integrals of the logarithm of the Riemann ζ-function and equivalent to the Riemann hypothesis can be established and present some of them as an example. It is shown that all earlier known equalities of this type, viz., the Wang equality, Volchkov equality, Balazard–Saias–Yor equality, and an equality established by one of the authors, are certain special cases of our general approach.