Balleans and G-spaces
We show that every ballean (equivalently, coarse structure) on a set X can be determined by some group G of permutations of X and some group ideal I on G. We refine this characterization for some basic classes of balleans (metrizable, cellular, graph, locally finite, and uniformly locally finite). T...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164148 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Balleans and G-spaces / O.V. Petrenko, I.V. Protasov // Український математичний журнал. — 2012. — Т. 64, № 3. — С. 344-350. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We show that every ballean (equivalently, coarse structure) on a set X can be determined by some group G of permutations of X and some group ideal I on G. We refine this characterization for some basic classes of balleans (metrizable, cellular, graph, locally finite, and uniformly locally finite). Then we show that a free ultrafilter U on ω is a T -point with respect to the class of all metrizable locally finite balleans on ω if and only if U is a Q-point. The paper is concluded with a list of open questions. |
---|