2025-02-23T09:17:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164161%22&qt=morelikethis&rows=5
2025-02-23T09:17:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164161%22&qt=morelikethis&rows=5
2025-02-23T09:17:01-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:17:01-05:00 DEBUG: Deserialized SOLR response

Iteration process for multiple rogers–ramanujan identities

Replacing the monomials by an arbitrary sequence in the recursive lemma found by Bressoud (1983), we establish several general transformation formulas from unilateral multiple basic hypergeometric series to bilateral univariate ones, which are then used for the derivation of numerous multiple series...

Full description

Saved in:
Bibliographic Details
Main Authors: Chu, W., Wang, C.
Format: Article
Language:English
Published: Український математичний журнал 2012
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/164161
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-164161
record_format dspace
spelling irk-123456789-1641612020-02-09T01:26:31Z Iteration process for multiple rogers–ramanujan identities Chu, W. Wang, C. Статті Replacing the monomials by an arbitrary sequence in the recursive lemma found by Bressoud (1983), we establish several general transformation formulas from unilateral multiple basic hypergeometric series to bilateral univariate ones, which are then used for the derivation of numerous multiple series identities of Rogers–Ramanujan type. За допомогою замiни мономiв довiльною послiдовнiстю в рекурентнiй лемi Брессо (1983) встановлено декiлька загальних формул перетворення однобiчних кратних основних гiпергеометричних рядiв у двобiчнi одновимiрнi ряди, якi потiм використовуються для виведення численних тотожностей типу Роджерса – Рамануджана для кратних рядiв. 2012 Article Iteration process for multiple rogers–ramanujan identities / W. Chu, C. Wang // Український математичний журнал. — 2012. — Т. 64, № 1. — С. 100-125. — Бібліогр.: 60 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164161 517.5 en Український математичний журнал Український математичний журнал
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Chu, W.
Wang, C.
Iteration process for multiple rogers–ramanujan identities
Український математичний журнал
description Replacing the monomials by an arbitrary sequence in the recursive lemma found by Bressoud (1983), we establish several general transformation formulas from unilateral multiple basic hypergeometric series to bilateral univariate ones, which are then used for the derivation of numerous multiple series identities of Rogers–Ramanujan type.
format Article
author Chu, W.
Wang, C.
author_facet Chu, W.
Wang, C.
author_sort Chu, W.
title Iteration process for multiple rogers–ramanujan identities
title_short Iteration process for multiple rogers–ramanujan identities
title_full Iteration process for multiple rogers–ramanujan identities
title_fullStr Iteration process for multiple rogers–ramanujan identities
title_full_unstemmed Iteration process for multiple rogers–ramanujan identities
title_sort iteration process for multiple rogers–ramanujan identities
publisher Український математичний журнал
publishDate 2012
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164161
citation_txt Iteration process for multiple rogers–ramanujan identities / W. Chu, C. Wang // Український математичний журнал. — 2012. — Т. 64, № 1. — С. 100-125. — Бібліогр.: 60 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT chuw iterationprocessformultiplerogersramanujanidentities
AT wangc iterationprocessformultiplerogersramanujanidentities
first_indexed 2023-10-18T22:12:54Z
last_indexed 2023-10-18T22:12:54Z
_version_ 1796154933192425472