2025-02-23T11:16:12-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164169%22&qt=morelikethis&rows=5
2025-02-23T11:16:12-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164169%22&qt=morelikethis&rows=5
2025-02-23T11:16:12-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:16:12-05:00 DEBUG: Deserialized SOLR response

Recognition of the groups L₅(4) and U₄(4) by the prime graph

Let G be a finite group. The prime graph of G is the graph Γ(G) whose set of vertices is the set Π(G) of all prime divisors of the order |G| and two different vertices p and q of which are connected by an edge if G has an element of order pq. We prove that if S is one of the simple groups L₅(4) and...

Full description

Saved in:
Bibliographic Details
Main Authors: Nosratpour, P., Darafsheh, M.R.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/164169
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-164169
record_format dspace
spelling irk-123456789-1641692020-02-23T18:27:38Z Recognition of the groups L₅(4) and U₄(4) by the prime graph Nosratpour, P. Darafsheh, M.R. Статті Let G be a finite group. The prime graph of G is the graph Γ(G) whose set of vertices is the set Π(G) of all prime divisors of the order |G| and two different vertices p and q of which are connected by an edge if G has an element of order pq. We prove that if S is one of the simple groups L₅(4) and U₄(4) and G is a finite group with Γ(G) = Γ(S), then G has a normal subgroup N such that Π(N) ⊆ {2, 3, 5} and G/N≅S. Нехай G — скiнченна група. Графом простих чисел групи G називають граф Γ(G), множиною вершин якого є множина Π(G) усiх простих дiльникiв порядку |G| i в якому двi рiзнi вершини p та q з’єднанi ребром, якщо G мiстить елемент порядку pq. Доведено, що, якщо S є однiєю з простих груп L₅(4) та U₄(4), а G є скiнченною групою, для якої Γ(G)=Γ(S), то G має нормальну пiдгрупу N таку, що Π(N)⊆{2,3,5} та G/N≅S. 2012 Article Recognition of the groups L₅(4) and U₄(4) by the prime graph / P. Nosratpour, M.R. Darafsheh // Український математичний журнал. — 2012. — Т. 64, № 2. — С. 210-217. — Бібліогр.: 21 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164169 512.5 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Nosratpour, P.
Darafsheh, M.R.
Recognition of the groups L₅(4) and U₄(4) by the prime graph
Український математичний журнал
description Let G be a finite group. The prime graph of G is the graph Γ(G) whose set of vertices is the set Π(G) of all prime divisors of the order |G| and two different vertices p and q of which are connected by an edge if G has an element of order pq. We prove that if S is one of the simple groups L₅(4) and U₄(4) and G is a finite group with Γ(G) = Γ(S), then G has a normal subgroup N such that Π(N) ⊆ {2, 3, 5} and G/N≅S.
format Article
author Nosratpour, P.
Darafsheh, M.R.
author_facet Nosratpour, P.
Darafsheh, M.R.
author_sort Nosratpour, P.
title Recognition of the groups L₅(4) and U₄(4) by the prime graph
title_short Recognition of the groups L₅(4) and U₄(4) by the prime graph
title_full Recognition of the groups L₅(4) and U₄(4) by the prime graph
title_fullStr Recognition of the groups L₅(4) and U₄(4) by the prime graph
title_full_unstemmed Recognition of the groups L₅(4) and U₄(4) by the prime graph
title_sort recognition of the groups l₅(4) and u₄(4) by the prime graph
publisher Інститут математики НАН України
publishDate 2012
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164169
citation_txt Recognition of the groups L₅(4) and U₄(4) by the prime graph / P. Nosratpour, M.R. Darafsheh // Український математичний журнал. — 2012. — Т. 64, № 2. — С. 210-217. — Бібліогр.: 21 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT nosratpourp recognitionofthegroupsl54andu44bytheprimegraph
AT darafshehmr recognitionofthegroupsl54andu44bytheprimegraph
first_indexed 2023-10-18T22:12:55Z
last_indexed 2023-10-18T22:12:55Z
_version_ 1796154933403189248