Bogolyubov averaging and normalization procedures in nonlinear mechanics. IV
In this paper, we apply the theory developed in parts I-III to some classes of problems. We consider linear systems in zero approximation and investigate the problem of invariance of integral manifolds under perturbations. Unlike nonlinear systems, linear ones have centralized systems, which are al...
Збережено в:
Дата: | 1995 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
1995
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164245 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bogolyubov averaging and normalization procedures in nonlinear mechanics. IV / A.K. Lopatin, Yu.A. Mitropolskiy // Український математичний журнал. — 1995. — Т. 47, № 8. — С. 1044–1068. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this paper, we apply the theory developed in parts I-III to some classes of problems. We consider linear systems in zero approximation and investigate the problem of invariance of integral manifolds under perturbations. Unlike nonlinear systems, linear ones have centralized systems, which are always decomposable. Moreover, restrictions connected with the impossibility of diagonalization of the coefficient matrix in zero approximation are removed. In conclusion, we apply the method of local asymptotic decomposition to some mechanical problems. |
---|