Correction of nonlinear orthogonal regression estimator

For any nonlinear regression function, it is shown that the orthogonal regression procedure delivers an inconsistent estimator. A new technical approach to the proof of inconsistency based on the implicit-function theorem is presented. For small measurement errors, the leading term of the asymptotic...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2004
Автори: Fazekas, I., Kukush, A., Zwanzig, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2004
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164274
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Correction of nonlinear orthogonal regression estimator / I. Fazekas, A. Kukush, S. Zwanzig // Український математичний журнал. — 2004. — Т. 56, № 8. — С. 1101–1118. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For any nonlinear regression function, it is shown that the orthogonal regression procedure delivers an inconsistent estimator. A new technical approach to the proof of inconsistency based on the implicit-function theorem is presented. For small measurement errors, the leading term of the asymptotic expansion of the estimator is derived. We construct a corrected estimator, which has a smaller asymptotic deviation for small measurement errors.