Экстремальные задачи теории логарифмического потенциала

Знайдено постановку та розв'язано екстремальну задачу теорії логарифмічного потенціалу, яка є дуальною до основної мінімум-проблеми теорії внутрішніх ємностей конденсаторів, але, на відміну від останньої, розв'язна навіть для незамкнених конденсаторів. Її розв'язок є природним узагаль...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Зорий, Н.В., Латышев, А.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 2002
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164319
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Экстремальные задачи теории логарифмического потенциала / Н.В. Зорий, А.А. Латышев // Український математичний журнал. — 2002. — Т. 54, № 9. — С. 1220–1236. — Бібліогр.: 13 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Знайдено постановку та розв'язано екстремальну задачу теорії логарифмічного потенціалу, яка є дуальною до основної мінімум-проблеми теорії внутрішніх ємностей конденсаторів, але, на відміну від останньої, розв'язна навіть для незамкнених конденсаторів. Її розв'язок є природним узагальненням на випадок конденсатора класичного поняття внутрішньої рівноважної міри множини. Конденсатор трактується як скінченна сукупність множин, кожній з яких приписано знак + або - , причому замикання різнознакових множин попарно диз'юнктні. Доведено також ряд тверджень про неперервність екстремалей.