2025-02-23T13:35:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164362%22&qt=morelikethis&rows=5
2025-02-23T13:35:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164362%22&qt=morelikethis&rows=5
2025-02-23T13:35:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:35:32-05:00 DEBUG: Deserialized SOLR response
Subharmonics of a Nonconvex Noncoercive Hamiltonian System
We study the problem of the existence of multiple periodic solutions of the Hamiltonian system Jx˙+u∇G(t,u(x))=e(t), where u is a linear mapping, G is a C¹-function, and e is a continuous function.
Saved in:
Main Authors: | Kallel, N., Timoumi, М. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2003
|
Series: | Український математичний журнал |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/164362 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T13:35:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164362%22&qt=morelikethis
2025-02-23T13:35:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164362%22&qt=morelikethis
2025-02-23T13:35:32-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:35:32-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
On Some Noncoercive Variational Inequalities
by: Gallo, А., et al.
Published: (2001) -
On subharmonic extension and extension in the Hardy-Orlicz classes
by: Riihentaus, J, et al.
Published: (1993) -
Spectrum and States of the BCS Hamiltonian in a Finite Domain. III. BCS Hamiltonian with Mean-Field Interaction
by: Petrina, D.Ya.
Published: (2002) -
On the Lie algebra structures connected with Hamiltonian dynamical systems
by: Smirnov, R.G.
Published: (1997) -
The Reduction Method in the Theory of Lie-Algebraically Integrable Oscillatory Hamiltonian Systems
by: Prykarpatsky, A.K., et al.
Published: (2003)