О некоторых экстремальных задачах теории приближений в комплексной плоскости
У банаховых просторах Харді Hq, Бергмана H′q на ℬ (p,q,λ), одержано точні значення колмогоровського, берпштейнівського, гельфандінського, лінійного та тригопометричного n-поперечників класів аналітичних у колі |z|<1 функцій, у яких усереднені модулі неперервності r−x похідних мажоруються деякою ф...
Збережено в:
Дата: | 2004 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2004
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164368 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О некоторых экстремальных задачах теории приближений в комплексной плоскости / С.Б. Вакарчук // Український математичний журнал. — 2004. — Т. 56, № 9. — С. 1155–1171. — Бібліогр.: 22 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | У банаховых просторах Харді Hq, Бергмана H′q на ℬ (p,q,λ), одержано точні значення колмогоровського, берпштейнівського, гельфандінського, лінійного та тригопометричного n-поперечників класів аналітичних у колі |z|<1 функцій, у яких усереднені модулі неперервності r−x похідних мажоруються деякою функцією. Для цих класів також розгляиуго задачі оптимальпого відновлення та кодування функцій. |
---|