Infinite Systems of Hyperbolic Functional Differential Equations

We consider initial-value problems for infinite systems of first-order partial functional differential equations. The unknown function is the functional argument in equations and the partial derivations appear in the classical sense. A theorem on the existence of a solution and its continuous depend...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Kamont, Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2003
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164380
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Infinite Systems of Hyperbolic Functional Differential Equations / Z. Kamont // Український математичний журнал. — 2003. — Т. 55, № 12. — С. 1678–1696. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider initial-value problems for infinite systems of first-order partial functional differential equations. The unknown function is the functional argument in equations and the partial derivations appear in the classical sense. A theorem on the existence of a solution and its continuous dependence upon initial data is proved. The Cauchy problem is transformed into a system of functional integral equations. The existence of a solution of this system is proved by using integral inequalities and the iterative method. Infinite differential systems with deviated argument and differential integral systems can be derived from the general model by specializing given operators.