Про локальні майже-кільця з мультиплікативною групою Міллера - Морено
Почти-кольцо R с единицей локально, если множество L всех его необратимых элементов является подгруппой аддитивной группы R+. Изучаются локальные почти-кольца порядка 2n, мультипликативная группа R∗, которых является группой Миллера – Морено, т. е. неабелевой группой, все собственные подгруппы котор...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164416 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Про локальні майже-кільця з мультиплікативною групою Міллера - Морено / М.Ю. Раєвська, Я.П. Сисак // Український математичний журнал. — 2012. — Т. 64, № 6. — С. 811-818. — Бібліогр.: 16 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Почти-кольцо R с единицей локально, если множество L всех его необратимых элементов является подгруппой аддитивной группы R+. Изучаются локальные почти-кольца порядка 2n, мультипликативная группа R∗, которых является группой Миллера – Морено, т. е. неабелевой группой, все собственные подгруппы которой абелевы. Доказано, в частности, что если L — подгруппа индекса 2m в R+, то либо m — простое число, для которого 2m−1 является простым числом Мерсенна, либо m=1. В первом случае n=2m, подгруппа L элементарная абелева, экспонента группы R+ не превышает 4 и порядок группы R∗ равен 2m(2m−1). Во втором случае либо n<7, либо подгруппа L абелева, а R∗— неметациклическая группа порядка 2n−1 и экспоненты не выше 2n−4. |
---|