Shape-preserving projections in low-dimensional settings and the q-monotone case
Let P:X → V be a projection from a real Banach space X onto a subspace V and let S ⊂ X. In this setting, one can ask if S is left invariant under P, i.e., if PS ⊂ S. If V is finite-dimensional and S is a cone with particular structure, then the occurrence of the imbedding PS ⊂ S can be characterized...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164420 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Shape-preserving projections in low-dimensional settings and the q-monotone case / M.P. Prophet, I.A. Shevchuk // Український математичний журнал. — 2012. — Т. 64, № 5. — С. 674-684. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let P:X → V be a projection from a real Banach space X onto a subspace V and let S ⊂ X. In this setting, one can ask if S is left invariant under P, i.e., if PS ⊂ S. If V is finite-dimensional and S is a cone with particular structure, then the occurrence of the imbedding PS ⊂ S can be characterized through a geometric description. This characterization relies heavily on the structure of S, or, more specifically, on the structure of the cone S * dual to S. In this paper, we remove the structural assumptions on S * and characterize the cases where PS ⊂ S. We note that the (so-called) q-monotone shape forms a cone that (lacks structure and thus) serves as an application for our characterization. |
---|