2025-02-22T10:10:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164421%22&qt=morelikethis&rows=5
2025-02-22T10:10:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-164421%22&qt=morelikethis&rows=5
2025-02-22T10:10:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T10:10:24-05:00 DEBUG: Deserialized SOLR response

On the improvement of the rate of convergence of the generalized Bieberbach polynomials in domains with zero angles

Let ℂ be the complex plane, let C¯=C∪{∞}, let G ⊂ ℂ be a finite Jordan domain with 0 ∈ G; let L := ∂G; let Ω := C¯∖G¯, and let w = φ(z) be a conformal mapping of G onto a disk B(0, ρ₀) := {w:|w|<ρ₀} normalized by the conditions φ(z) = 0 and φ′(0)=1, where ρ₀ = ρ₀(0, G) is the conformal radius of...

Full description

Saved in:
Bibliographic Details
Main Authors: Abdullayev, F.G., Özkartepe, N.P.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/164421
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let ℂ be the complex plane, let C¯=C∪{∞}, let G ⊂ ℂ be a finite Jordan domain with 0 ∈ G; let L := ∂G; let Ω := C¯∖G¯, and let w = φ(z) be a conformal mapping of G onto a disk B(0, ρ₀) := {w:|w|<ρ₀} normalized by the conditions φ(z) = 0 and φ′(0)=1, where ρ₀ = ρ₀(0, G) is the conformal radius of G with respect to 0. Let φp(z):=∫₀z[φ′(ζ)]2/pdζ and let π n,p (z) be the generalized Bieberbach polynomial of degree n for the pair (G, 0) that minimizes the integral ∬G∣∣φ′p(z)−P′n(z)∣∣pdσz in the class of all polynomials of degree deg Pn ≤ n such that Pn(0) = 0 and P′n(0)=1. We study the uniform convergence of the generalized Bieberbach polynomials π n,p (z) to φ p (z) on G¯ with interior and exterior zero angles determined depending on properties of boundary arcs and the degree of their tangency. In particular, for Bieberbach polynomials, we obtain improved estimates for the rate of convergence in these domains.