On the improvement of the rate of convergence of the generalized Bieberbach polynomials in domains with zero angles
Let ℂ be the complex plane, let C¯=C∪{∞}, let G ⊂ ℂ be a finite Jordan domain with 0 ∈ G; let L := ∂G; let Ω := C¯∖G¯, and let w = φ(z) be a conformal mapping of G onto a disk B(0, ρ₀) := {w:|w|<ρ₀} normalized by the conditions φ(z) = 0 and φ′(0)=1, where ρ₀ = ρ₀(0, G) is the conformal radius of...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2012
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164421 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the improvement of the rate of convergence of the generalized Bieberbach polynomials in domains with zero angles / F.G. Abdullayev, N.P. Özkartepe // Український математичний журнал. — 2012. — Т. 64, № 5. — С. 582-596. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Let ℂ be the complex plane, let C¯=C∪{∞}, let G ⊂ ℂ be a finite Jordan domain with 0 ∈ G; let L := ∂G; let Ω := C¯∖G¯, and let w = φ(z) be a conformal mapping of G onto a disk B(0, ρ₀) := {w:|w|<ρ₀} normalized by the conditions φ(z) = 0 and φ′(0)=1, where ρ₀ = ρ₀(0, G) is the conformal radius of G with respect to 0. Let
φp(z):=∫₀z[φ′(ζ)]2/pdζ
and let π n,p (z) be the generalized Bieberbach polynomial of degree n for the pair (G, 0) that minimizes the integral
∬G∣∣φ′p(z)−P′n(z)∣∣pdσz
in the class of all polynomials of degree deg Pn ≤ n such that Pn(0) = 0 and P′n(0)=1. We study the uniform convergence of the generalized Bieberbach polynomials π n,p (z) to φ p (z) on G¯ with interior and exterior zero angles determined depending on properties of boundary arcs and the degree of their tangency. In particular, for Bieberbach polynomials, we obtain improved estimates for the rate of convergence in these domains. |
---|