Характеризація швидкості збіжності одного наближеного методу розв'язування абстрактної задачі Коші

Рассмотрен приближенный метод решения задачи Коши для дифференциально-операторного уравнения, основанный на разложении экспоненты по ортогональным многочленам Лагерра. Доказано, что принадлежность начального значения определенному пространству гладких элементов оператора A эквивалентна сходимости не...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Торба, С.М., Кашпіровський, О.І.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 2008
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164499
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Характеризація швидкості збіжності одного наближеного методу розв'язування абстрактної задачі Коші / С.М. Торба, О.І. Кашпіровський // Український математичний журнал. — 2008. — Т. 60, № 4. — С. 557–563. — Бібліогр.: 13 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Рассмотрен приближенный метод решения задачи Коши для дифференциально-операторного уравнения, основанный на разложении экспоненты по ортогональным многочленам Лагерра. Доказано, что принадлежность начального значения определенному пространству гладких элементов оператора A эквивалентна сходимости некоторой взвешенной суммы интегральных невязок. Как следствие, получены прямые и обратные теоремы теории приближения в среднем.