Краевые задачи для уравнения теплопроводности с дробной производной в граничных условиях и разностные методы их численной реализации
Розглядаються крайові задачі для рівняння теплопровідності з дробовою похідною в крайових умовах. Задачі такого типу одержуємо при оцінюванні теплових процесів з допомогою однови- мірної теплофізичної моделі двошарової системи (покриття-основа) нестаціонарною тепловою течією. Доведена коректність ро...
Збережено в:
Дата: | 1993 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1993
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164596 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Краевые задачи для уравнения теплопроводности с дробной производной в граничных условиях и разностные методы их численной реализации / М.Х. Шхануков, А.А. Керефов, А.А. Березовский // Український математичний журнал. — 1993. — Т. 45, № 9. — С. 1289–1398. — Бібліогр.: 6 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Розглядаються крайові задачі для рівняння теплопровідності з дробовою похідною в крайових умовах. Задачі такого типу одержуємо при оцінюванні теплових процесів з допомогою однови- мірної теплофізичної моделі двошарової системи (покриття-основа) нестаціонарною тепловою течією. Доведена коректність розглядуваної задачі, побудована однопараметрична сім’я різницевих схем, встановлена стійкість і збіжність різницевих схем у рівномірній метриці. |
---|