Краевые задачи для уравнения теплопроводности с дробной производной в граничных условиях и разностные методы их численной реализации

Розглядаються крайові задачі для рівняння теплопровідності з дробовою похідною в крайових умовах. Задачі такого типу одержуємо при оцінюванні теплових процесів з допомогою однови- мірної теплофізичної моделі двошарової системи (покриття-основа) нестаціонарною тепловою течією. Доведена коректність ро...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1993
Автори: Шхануков, М.Х., Керфов, А.А., Березовский, А.А.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут математики НАН України 1993
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164596
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Краевые задачи для уравнения теплопроводности с дробной производной в граничных условиях и разностные методы их численной реализации / М.Х. Шхануков, А.А. Керефов, А.А. Березовский // Український математичний журнал. — 1993. — Т. 45, № 9. — С. 1289–1398. — Бібліогр.: 6 назв. — рос.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Розглядаються крайові задачі для рівняння теплопровідності з дробовою похідною в крайових умовах. Задачі такого типу одержуємо при оцінюванні теплових процесів з допомогою однови- мірної теплофізичної моделі двошарової системи (покриття-основа) нестаціонарною тепловою течією. Доведена коректність розглядуваної задачі, побудована однопараметрична сім’я різни­цевих схем, встановлена стійкість і збіжність різницевих схем у рівномірній метриці.