О существовании равновесных состояний систем упругих шаров в пределе Больцмана - Энскога
Вивчаються рівноважні стани систем пружних куль в границі Больцмана - Енскога, коли (d→0, 1/v→∞ (z→∞), d³(1/v)=const (d³z=const)). Для цього використовуються рівняння Кірквуда - Зальцбурга. Доведено, що в границі Больцмана - Енскога існують розв'язки цих рівнянь, і граничні функції розподілу ст...
Збережено в:
Дата: | 1997 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
1997
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164600 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | О существовании равновесных состояний систем упругих шаров в пределе Больцмана - Энскога / Д.Я. Петрина, Е.Д. Петрина // Український математичний журнал. — 1997. — Т. 49, № 1. — С. 112–121. — Бібліогр.: 4 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Вивчаються рівноважні стани систем пружних куль в границі Больцмана - Енскога, коли (d→0, 1/v→∞ (z→∞), d³(1/v)=const (d³z=const)). Для цього використовуються рівняння Кірквуда - Зальцбурга. Доведено, що в границі Больцмана - Енскога існують розв'язки цих рівнянь, і граничні функції розподілу сталі. Використовуючи умову узгодженості і кластерності, доведено, що всі функції розподілу дорівнюють добутку одночастинкових, які в свою чергу можна подати степеневим рядом від z=d³z з певними коефіцієнтами. |
---|