Properties of restrictions of the operator of multiplication by a continuous function
Для оператора А множення на неперервну функцію a(t) в просторі L2[0,b]=H, дано опис двох множин нескінченновимірних підпросторів нескінченної корозмірності: I(A)={N⊂H:A/N — ізоморфізм }, K(A)={M⊂H:A/M — компактне відображення}. Як приклад розглянуто питання про безумовну базисність послідовності {a...
Збережено в:
Дата: | 1995 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
1995
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164631 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Properties of restrictions of the operator of multiplication by a continuous function / V.V. Shevchik // Український математичний журнал. — 1995. — Т. 47, № 12. — С. 1720–1722. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Для оператора А множення на неперервну функцію a(t) в просторі L2[0,b]=H, дано опис двох множин нескінченновимірних підпросторів нескінченної корозмірності: I(A)={N⊂H:A/N — ізоморфізм }, K(A)={M⊂H:A/M — компактне відображення}. Як приклад розглянуто питання про безумовну базисність послідовності {a(t)en(t)},, де en(t) — ортонормована послідовність в L2[0,b]. |
---|