On the smoothness of a solution of the first boundary-value problem for second-order degenerate elliptic-parabolic equations
In this work, the first boundary-value problem is considered for second-order degenerate elliptic-parabolic equation with, generally speaking, discontinuous coefficients. The matrix of senior coefficients satisfies the parabolic Cordes condition with respect to space variables. We prove that the gen...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164686 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the smoothness of a solution of the first boundary-value problem for second-order degenerate elliptic-parabolic equations / T.S. Gadjiev, E.R. Gasimova // Український математичний журнал. — 2008. — Т. 60, № 6. — С. 723–736. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | In this work, the first boundary-value problem is considered for second-order degenerate elliptic-parabolic equation with, generally speaking, discontinuous coefficients. The matrix of senior coefficients satisfies the parabolic Cordes condition with respect to space variables. We prove that the generalized solution to the problem belongs to the Hölder space C1+λ if the right-hand side f belongs to Lp , p > n . |
---|