Обратная задача Штурма–Лиувилля на графе в виде восьмерки
Вивчається обернена задача для рівняння Штурма–Ліувілля на графі, що складається з двох квазіодновимірних петель однакової довжини, які мають спільну вершину. В якості спектральних даних розглядається множина власних значень усієї системи разом з множинами власних значень двох задач Діріхле для рівн...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164747 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Обратная задача Штурма–Лиувилля на графе в виде восьмерки / А.М. Гомилко, В.Н. Пивоварчик // Український математичний журнал. — 2008. — Т. 60, № 9. — С. 1168–1188. — Бібліогр.: 24 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Вивчається обернена задача для рівняння Штурма–Ліувілля на графі, що складається з двох квазіодновимірних петель однакової довжини, які мають спільну вершину. В якості спектральних даних розглядається множина власних значень усієї системи разом з множинами власних значень двох задач Діріхле для рівнянь Штурма–Ліувілля, що отримуються, якщо у вершині графа взяти умови повного відбиття. Одержано умови на три послідовності дійсних чисел, що дозволяють відновити пару відповідних кожній петлі дійсних потенціалів із L₂. Наведено алгоритм побудови всієї множини потенціалів, що відповідають даній трійці спектрів. |
---|