До теорем Скитовича - Дармуа та Хейде у банаховому просторі
Известная теорема Скитовича - Дармуа утверждает, что из независимости двух линейных форм от независимых случайных величин с ненулевыми коэффициентами следует, что случайные величины являются гауссовыми. Этот результат был обобщен Краковяком для случайных величин со значениями в банаховом пространств...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164751 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | До теорем Скитовича - Дармуа та Хейде у банаховому просторі / М.В. Миронюк // Український математичний журнал. — 2008. — Т. 60, № 9. — С. 1234–1242. — Бібліогр.: 19 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Известная теорема Скитовича - Дармуа утверждает, что из независимости двух линейных форм от независимых случайных величин с ненулевыми коэффициентами следует, что случайные величины являются гауссовыми. Этот результат был обобщен Краковяком для случайных величин со значениями в банаховом пространстве, когда коэффициентами форм являются непрерывные оборотные операторы. В первой части работы приведено новое доказательство теоремы Скитовича - Дармуа в банаховом пространстве.
Хейде доказал близкую к теореме Скитовича - Дармуа характеризационную теорему, в которой вместо независимости линейных форм предполагалось, что условное распределение одной линейной формы при фиксированной другой является симметричным. Во второй части работы доказан аналог теоремы Хейде в банаховом пространстве. |
---|