Renormalization constant for the local times of self-intersections of a diffusion process in the plane

The self-intersection local times of a diffusion process in the plane are studied. The main result consists in investigating asymptotic behavior of renormalizing constant for this local time.

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Izyumtseva, O.L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164780
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Renormalization constant for the local times of self-intersections of a diffusion process in the plane / O.L. Izyumtseva // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1489–1498. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164780
record_format dspace
spelling irk-123456789-1647802020-02-11T01:27:21Z Renormalization constant for the local times of self-intersections of a diffusion process in the plane Izyumtseva, O.L. Статті The self-intersection local times of a diffusion process in the plane are studied. The main result consists in investigating asymptotic behavior of renormalizing constant for this local time. Розглянуто локальний час самоперетинів для дифузійного процесу на площині. Головним результатом є дослідження асимптотичної поведінки константи перенормування цього локального часу. 2008 Article Renormalization constant for the local times of self-intersections of a diffusion process in the plane / O.L. Izyumtseva // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1489–1498. — Бібліогр.: 10 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164780 519.21 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Izyumtseva, O.L.
Renormalization constant for the local times of self-intersections of a diffusion process in the plane
Український математичний журнал
description The self-intersection local times of a diffusion process in the plane are studied. The main result consists in investigating asymptotic behavior of renormalizing constant for this local time.
format Article
author Izyumtseva, O.L.
author_facet Izyumtseva, O.L.
author_sort Izyumtseva, O.L.
title Renormalization constant for the local times of self-intersections of a diffusion process in the plane
title_short Renormalization constant for the local times of self-intersections of a diffusion process in the plane
title_full Renormalization constant for the local times of self-intersections of a diffusion process in the plane
title_fullStr Renormalization constant for the local times of self-intersections of a diffusion process in the plane
title_full_unstemmed Renormalization constant for the local times of self-intersections of a diffusion process in the plane
title_sort renormalization constant for the local times of self-intersections of a diffusion process in the plane
publisher Інститут математики НАН України
publishDate 2008
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164780
citation_txt Renormalization constant for the local times of self-intersections of a diffusion process in the plane / O.L. Izyumtseva // Український математичний журнал. — 2008. — Т. 60, № 11. — С. 1489–1498. — Бібліогр.: 10 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT izyumtsevaol renormalizationconstantforthelocaltimesofselfintersectionsofadiffusionprocessintheplane
first_indexed 2025-07-14T17:21:52Z
last_indexed 2025-07-14T17:21:52Z
_version_ 1837643819735056384
fulltext UDC 519.21 O. L. Izyumtseva (Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv) THE CONSTANT OF RENORMALIZATION FOR SELF-INTERSECTION LOCAL TIME OF DIFFUSION PROCESS IN THE PLANE ∗∗∗∗ KONSTANTA PERENORMUVANNQ LOKAL|NOHO ÇASU SAMOPERETYNIV DYFUZIJNOHO PROCESU NA PLOWYNI The self-intersection local times of a diffusion process in the plane are studied. The main result consists in investigating asymptotic behavior of renormalizing constant for this local time. Rozhlqnuto lokal\nyj ças samoperetyniv dlq dyfuzijnoho procesu na plowyni. Holovnym re- zul\tatom [ doslidΩennq asymptotyçno] povedinky konstanty perenormuvannq c\oho lokal\no- ho çasu. Introduction and the main result. The local time of self-intersections of Brownian motion arose in the study of Euclidian field theory [1]. Since then, many papers devo- ted to renormalized self-intersection local time have appeared. For instance Dynkin in [2] have studied the local time of self-intersections for planar Brownian motion. Le Gall in [3] defined the Wiener sausage and got some results for it in terms of the local time of self-intersections of Wiener process. Rosen in [4, 5, 6] investigated the local time of self-intersections for the stable process in R2. Bass and Khoshnevisan in[7] gave a new method of constructing intersection local times for Brownian motion in R2 and R 3 by using stochastic calculus and additive functionals of Markov process and obtained Tanaka formula for self-intersection local times of planar Brownian motion. Chen, Xia in [8] have studied large deviation and law of the iterated logarithm for self-intersection local times of additive process. More references can be found in papers mentioned above. The goal of this paper is to consider the self-intersection local times for diffusion process in the plane and to study the asymptotic behaviour of renormalizing constant for it. In studying double self-intersections of planar Wiener process w t t( ), ≥{ }0 one naturally tries to use the formal expression δ0 2 1 0 12 ( ( ) ( )) ( , ) w s w s ds−∫ � ∆ , (1) where ∆2 0 1( , ) = 0 11 2≤ ≤ ≤{ }s s , δ0 is the δ -function concentrated at the point zero. Let f xε ε( ), >{ }0 be an approximate sequence for δ0 given by the following formula: f xε( ) = 1 2 2 2 πε εe x− . (2) Consider ∗ Partially supported by the Ministry of Education and Science of Ukraine (project No GP/F13/0095). © O. L. IZYUMTSEVA, 2008 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1489 1490 O. L. IZYUMTSEVA f w s w s dsε( ( ) ( )) ( , ) 2 1 0 12 −∫ � ∆ . (3) The expectation of (3) blows up as ε → 0 + . Therefore, instead of (3) consider T2 ε : = f w s w s ds E f w s w s dsε ε( ( ) ( )) ( ( ) ( )) ( , ) ( , ) 2 1 0 1 2 1 0 12 2 − − −∫ ∫ � � ∆ ∆ . (4) Dynkin in [2] proved that there exists L 2 0 2− → + lim ε εT , where this limit is called the renormalized self-intersection local time for planar Wiener process. Let us call the following expression as the renormalizing constant for self-intersec- tion local time of Wiener process in the plane: Cw ε : = E f w s w s dsε ( ( ) ( )) ( , ) 2 1 0 12 −∫ � ∆ . (5) In [2] it was showed that Cw ε ∼ 1 2 1 π ε ln , ε → 0 + . Let Y be a diffusion process in R 2 described by the stochastic differential equa- tion dY s a Y s ds B Y s dw s Y x ( ) ( ( )) ( ( )) ( ), ( ) . = + =0 0 (6) Here the coefficients a and B are Lipschitz functions. We suppose that m I1 < B B∗ < m I2 , (7) where m1, m2 are some positive constants, and I is identity matrix in R 2. Note that by using the fact that B is Lipschitz function and taking into account (7), one can show that det B is Lipschitz function too. The purpose of the article is to find the asymptotic behavior of renormalizing con- stant for self-intersection local times of diffusion process given in (6), namely, to find asymptotic behavior of CY ε : = E f Y s Y s dsε( ( ) ( )) ( , ) 2 1 0 12 −∫ � ∆ . (8) The main result of this paper is the following statement. Theorem. Suppose that diffusion process Y satisfies (6), fε is given by the formula (2). Then CY ε ∼ E B Y s ds1 1 2 1 0 1 det ( ( )) ln∫ π ε , ε → 0 + . (9) Note that there exists another case, when the renormalization can be described pre- cisely. By using this statement the following conclusion can be made. Let X t( ) be Ito process in terms of [9, Sec. 2] with the following representation: X t( ) = w t s ds t ( ) ( )+ ∫ 0 α , (10) where α is measurable bounded random function adapted to the flow of w. ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 THE CONSTANT OF RENORMALIZATION FOR SELF-INTERSECTION LOCAL TIME … 1491 By using Girsanov theorem and Dynkin result for Brownian motion, it can be che- cked that there exists both lim ( ) ε ε ε → + − 0 C CX w (11) and L f X s X s ds CX 2 0 2 1 0 12 − → + − −        ∫lim ( ( ) ( )) ( , ) ε ε ε � ∆ . (12) As a result we have the following equivalence: CX ε ∼ 1 2 1 π ε ln , ε → 0 + . (13) Let us rewrite (6) as follows: Y s( ) = x a Y r dr B Y r dw r s s 0 0 0 + +∫ ∫( ( )) ( ( )) ( ) . (14) In case of B = I, by using (9) we get CY ε ∼ 1 2 1 π ε ln , ε → 0 + . (15) Therefore, the hypothesis can be put forward that the renormalizing constant for the class of Ito processes of the form X s( ) = X B r dw r r dr s s 0 0 0 + +∫ ∫( ) ( ) ( )α is equivalent to E B s ds1 1 2 1 0 1 det ( ) ln∫ π ε , ε → 0 + . We will need the following estimations for transition density of diffusion process [10, Sec. 6]. Denote by EY s x s x( , ; , )1 1 2 2 transition density of the process Y, then there exist C1 > 0, C2 > 0 such that EY s x s x( , ; , )1 1 2 2 ≥ C s s e x x C s s1 2 1 1 2 2 1 2 1 − − − −( ) , (16) EY s x s x( , ; , )1 1 2 2 ≤ C s s e x x C s s2 2 1 1 2 2 2 2 1 − − − −( ) . (17) By using the estimations (16), (17), one can show that lim lnε ε ε → +0 1 CY ≤ C∗, (18) lim lnε ε ε → +0 1 CY ≥ C∗ , (19) where C∗, C∗ are some positive constants. ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1492 O. L. IZYUMTSEVA It should not be made any conclusion about the precise asymptotic behaviour of CY ε as ε → 0 + . That is why to prove the theorem we use another approach related not only to estimations (16), (17) but also to the parametrix method consisting of the following procedure. Asume that Y satisfies the equation Y s( ) = Y s a Y r dr B Y r dw r s s s s ( ) ( ( )) ( ( )) ( )0 0 0 + +∫ ∫ , (20) where s0 is some fixed point under Y s( )0 = x0 being fixed. According to the para- metrix method, the transition density of process Y on the interval [ , ]s0 1 can be ex- pressed as follows: EY s x s x( , ; , )1 1 2 2 = E EX s s Xs x s x s x s x s x s x dx ds( , ; , ) ( , ; , ) ( , ; , )1 1 2 2 1 1 3 3 3 3 2 2 3 3 1 2 2 + ∫ ∫ � Φ , where the process X has the representation X s( ) = x a x dr B x dw r s s s s 0 0 0 0 0 + +∫ ∫( ) ( ) ( ) (22) and Φ is some function satisfying the estimation [10, Sec. 4]. There exists C3 > 0 such that Φ( , ; , )s x s x1 1 3 3 ≤ C s s e x x C s s3 3 1 3 2 1 3 2 3 3 1 ( ) / ( ) − − − − . (23) So, transition density of diffusion process Y on the small time intervals is close to the transition density of Wiener process. Proof of theorem. Let n be fixed. Consider the partition of ∆2 0 1( , ) such that ∆2 0 1( , ) = ∆2 0 1 2 0 2 1k n k n R k n k k n , +    = − = − ∪ ∪∪ , (24) where ∆2 1k n k n , +    = k n s s k n ≤ ≤ ≤ +{ }1 2 1 , (25) Rk 2 = k n s k n k n s≤ ≤ + + ≤ ≤{ }1 2 1 1 1, . (26) Then CY ε = I In n 1 2, ,ε ε+ , where In 1,ε = E f Y s Y s ds k n k n k n = − +    ∑ ∫ − 0 1 2 1 1 2 ε( ( ) ( )) , � ∆ , (27) In 2,ε = E f Y s Y s ds k n Rk= − ∑ ∫ − 0 2 2 1 2 ε( ( ) ( )) � . (28) ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 THE CONSTANT OF RENORMALIZATION FOR SELF-INTERSECTION LOCAL TIME … 1493 Let us consider In 2,ε . By using (17) and usual calculations, In 2,ε can be estimated as follows: In 2,ε ≤ k n R c s s ds k= − ∑ ∫ −0 2 2 2 1 1 2 ( ) � ≤ c n( ), (29) where c n( ) is some positive constant which does not depend on ε . In 1,ε can be rewritten as In 1,ε = k n k nk n k n EE f Y s Y s F ds = − +    ∑ ∫ −    0 1 2 1 1 2 ε( ( ) ( )) , � ∆ = = E f x x k n Y k n s x s x s x dx ds k n k n k n Y Y = − +    ∑ ∫ ∫ × −         0 1 1 1 2 1 1 1 1 2 2 2 2 2 ∆ , ( ) , ; , ( , ; , ) R ε E E � � , (30) where as usual Ft = σ( ( ), )Y s s t≤ . According to the parametrix method, we get the following representation for In 1,ε: In 1,ε = E f x x k n Y k n s x k n k n k n X = − +     ∑ ∫ ∫ × −            0 1 1 1 2 1 1 2 2 2 ∆ , ( ) , ; , R Eε + + k n s X k n Y k n x s x s x s dx ds 1 2 3 3 3 3 1 1 3 3∫ ∫            R EΦ , ; , ( , ; , ) × × E E˜ ˜( , ; , ) ( , ; , ) ( , ; , ) X s s X s x s x s x s x s x s x dx ds dx ds1 1 2 2 1 1 3 3 3 3 2 2 3 3 1 2 2 +      ∫ ∫ R Φ � � , (31) The process X on the interval k n s/ , 1[ ] and X̃ on the interval s s1 2,[ ] have the fol- lowing representations: dX s a Y k n ds B Y k n dw s X k n Y k n ( ) ( ), , =         +             =     (32) dX s a X s ds B X s dw s X s X s ˜ ( ) ( ( )) ( ( )) ( ), ˜ ( ) ( ). = + = 1 1 1 1 (33) After some transformation, we obtain In 1,ε = E f x x k n k n k n = − +    ∑ ∫ ∫ × − 0 1 1 1 2 2 2 2 ∆ , ( ) R ε × × E EX X k n Y k n s x s x s x dx ds, ; , ( , ; , )˜        1 1 1 1 2 2 � � + + T T T2 3 4, , ,ε ε ε n n n+ + , (34) where ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1494 O. L. IZYUMTSEVA T2,ε n = E f x x s x s x k n k n k n X = − +    ∑ ∫ ∫ × − 0 1 1 1 2 1 1 2 2 2 2 2 ∆ , ˜( ) ( , ; , ) R ε E × × k n s X k n Y k n x s s x s x dx ds dx ds 1 2 3 3 3 3 1 1 3 3∫ ∫         R Φ , ; , ( , ; , )E � � , (35) T3,ε n = E f x x k n Y k n s x k n k n k n X = − +    ∑ ∫ ∫ × −         0 1 1 1 2 1 1 2 2 2 ∆ , ( ) , ; , R ε E × × s s X s x s x s x s x dx ds dx ds 1 2 2 1 1 3 3 3 3 2 2 3 3∫ ∫ R Φ( , ; , ) ( , ; , )˜E � � , (36) T4,ε n = E f x x k n Y k n x s k n k n k n s s k n s = − +    ∑ ∫ ∫ ∫ ∫ ∫ × × −         0 1 1 1 2 3 3 2 2 2 1 2 1 2 2 ∆ Φ , ( ) , ; , R R ε × × Φ( , ; , ) ( , ; , ) ( , ; , )˜s x s x s x s x s x s x dx dx ds ds dx dsX X1 1 4 4 3 3 1 1 4 4 2 2 3 4 3 4E E � � . (37) A few remarks about notation should be given. From now, we will denote B Y s( ( )) = b Y s b Y s b Y s b Y s 11 12 21 22 ( ( )) ( ( )) ( ( )) ( ( ))     , (38) � a Y s( ( )) = a Y s a Y s 1 2 ( ( )) ( ( ))     . (39) Let us consider E f x x k n Y k n s x s x s x dx ds k n k n k n X X = − +    ∑ ∫ ∫ × −         0 1 1 1 2 1 1 1 1 2 2 2 2 2 ∆ , ˜( ) , ; , ( , ; , ) R ε E E � � . (40) After some calculations (40) can be rewritten as E k n Y k n s x k n k n k n X = − +    ∑ ∫ ∫         0 1 1 1 1 2 2 1 2 ∆ , , ; , R E π × × 1 1 2 2 1 2 2 11 2 2 1 2 2 (det ( )) ( ) ( )( ) , ( , , , ) B x s s b x s s e dx ds iji j a B s − + − += − ∑ε ε ε � � � � , (41) where e a B s− ( , , , ) � � ε 2 = = exp ( ) ( ) ( ) ( ) ( ) (det ( )) ( ) ( )( ) , − −( ) − − + − +        =∑ 1 2 21 1 1 1 11 1 2 1 2 2 1 3 1 2 2 1 2 2 11 2 2 1 2 b x a x b x a x s s B x s s b x s siji j ε ε × ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 THE CONSTANT OF RENORMALIZATION FOR SELF-INTERSECTION LOCAL TIME … 1495 × exp ( ) ( ) ( ) (det ( )) ( ) ( )( ) , − +( ) − − + − +        =∑ ε ε ε2 1 2 1 2 2 1 2 1 2 1 2 2 1 2 2 11 2 2 1 2 a x a x s s B x s s b x s siji j × × exp ( ) ( ) ( ) ( ) ( ) (det ( )) ( ) ( )( ) , − −( ) − − + − +        =∑ 1 2 22 1 1 1 12 1 2 1 2 2 3 3 1 2 2 1 2 2 11 2 2 1 2 b x a x b x a x s s B x s s b x s siji j ε ε . For small ε > 0 the following inequality holds: e a B s− ( , , , ) � � ε 2 ≤ 1. (42) By using (42) we can write that (41) is less or equal to E k n Y k n s x k n k n k n X = − +    ∑ ∫ ∫         0 1 1 1 1 2 2 1 2 ∆ , , ; , R E π × × 1 1 2 2 1 2 2 11 2 2 1 2 1 (det ( )) ( ) ( )( ) , B x s s b x s s dx ds iji j − + − +=∑ε ε � � = = E k n Y k n s x k n k n k n X = − +    ∑ ∫ ∫         0 1 1 1 1 2 2 1 2 ∆ , , ; , R E π 1 1det ( )B x × × 1 2 1 2 1 2 2 11 2 2 1 2 1 2 1 ( ) (det ( )) ( )( ) (det ( )) , s s B x b x s s B x dx ds iji j − + − +− = −∑ε ε � . (43) Let us note that 1 1det ( )B x ≤ 1 1det ( ( ))/B Y k n L x Y k n + −     (44) with some positive constant L . By using (7) and (44) we can write that (43) is less or equal to E k n Y k n s x B Y k nk n k n k n X = − +    ∑ ∫ ∫         0 1 1 1 1 2 2 1 2 1 ∆ , , ; , det ( ( ))/ R E π × × 1 2 1 2 1 2 1 2 2 1 ( ) ( )s s d s s d dx ds − + − +ε ε � + + LE k n Y k n s x x Y k nk n k n k n X = − +    ∑ ∫ ∫         −     0 1 1 1 1 1 2 2 1 2 ∆ , , ; , R E π × × 1 2 1 2 1 2 1 2 2 1 ( ) ( )s s d s s d dx ds − + − +ε ε � , (45) where d1 = d m m1 1 2( , ), d2 = d m2 2( ) are some positive constants. Denote by Sn 1,ε and Sn 2,ε the first and the second terms of (45). After a usual calculations we get ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1496 O. L. IZYUMTSEVA Sn 1,ε ≤ 1 2 1 1 1 1 2 0 1 ln ( , ) det ( ( ))/ε +    = − ∑c d d E B Y k n nk n (46) with some positive constant c d d( , )1 2 . For arbitrary r > 0, Sn 2,ε can be rewritten as LE k n Y k n s x x Y k nk n k n k n B Y k n r X = − +            ∑ ∫ ∫         −     0 1 1 1 1 1 2 1 2 ∆ , , , ; ,E π × × 1 2 1 2 1 2 1 2 2 1 ( ) ( )s s d s s d dx ds − + − +ε ε � + + LE k n Y k n s x x Y k nk n k n k n B Y k n r X = − +            ∑ ∫ ∫         −     0 1 1 1 1 1 2 2 1 2 ∆ , ,\ , ; , R E π × × 1 2 1 2 1 2 1 2 2 1 ( ) ( )s s d s s d dx ds − + − +ε ε � . (47) where B Y k n r       , = x x Y k n r1 1: −     ≤{ } . The first and the second terms of (47) will be denoted by Sn r 2, , ε and Sn r 2, , ε . Let us consider Sn r 2, , ε . It can be estimated as follows: Sn r 2, , ε ≤ LrE s s d s s d ds k n k n k n = − +     ∑ ∫ − + − +0 1 1 2 1 2 1 2 1 2 2 2 1 2 1 ∆ , ( ) ( )π ε ε � = = 1 2 1 1 1 2π ε Lr c d d n n ln ( , )+    − . Consider Sn r 2, , ε . By using (32) we can write EX k n Y k n s x, ; ,       1 1 ≤ 1 2 1 2 1 2 1 π s k n e x Y k n s k n −( ) − − −( ) / ( / ) / . (48) By using (48) and polar coordinates transformation we get Sn r 2, , ε ≤ LE s k n e x Y k nk n k n k n B Y k n r x Y k n s k n = − +            − − −( )∑ ∫ ∫ −( ) −     0 1 1 1 2 1 2 2 1 2 11 2 ∆ , , ( / ) / \ / R π × × 1 2 1 2 1 2 1 2 2 1 ( ) ( )s s d s s d dx ds − + − +ε ε � = = LE s k n e s k n d ds k n k n k n r= − +    +∞ −∑ ∫ ∫− −    0 1 1 1 1 2 2 21 2 ∆ , / ρ ρ ρ � . Put ρ s k n1 − / = v, then ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 THE CONSTANT OF RENORMALIZATION FOR SELF-INTERSECTION LOCAL TIME … 1497 Sn r 2, , ε ≤ LE s k n s k n s k nk n k n k n = − +    ∑ ∫ − −    − 0 1 1 1 1 1 2 1 ∆ , / × × r s k n d e s s d s s d ds 1 2 2 2 2 1 2 1 2 1 2 2 1 − +∞ − ∫ − + − +/ ( ) ( ) v v v ε ε � ≤ ≤ 1 1 1 1 2n L n n c d d∗ − +   ln ( , ) ε with some positive constant L∗ . By using (17), (23), one can check that T2,ε n ≤ c n2 1( ) ln ε , T3,ε n ≤ c n3 1( ) ln ε , T4,ε n ≤ c n4( ) , where c n2( ) , c n3( ) c n4( ) are some positive constants such that c n2 0( ) → as n → + ∞ , c n3 0( ) → as n → + ∞ . Therefore, the following inequality holds: CY 3 ≤ 1 2 1 1 1 1 2 0 1 π ε ln ( , ) det ( ( ))/ +    = − ∑c d d E B Y k n nk n + + 1 2 1 1 1 1 1 1 2 1 2π ε ε Lr c d d n n n L n n c d dln ( , ) ln ( , )+    − + − +    ∗ + + c n c n c n c n2 3 4 1( ) ( ) ln ( ) ( )+( ) + + ε . This inequality implies that lim lnε ε ε → +0 1 CY ≤ lim lim lim ( , ) ln( ) det ( ( ))/ /r n k nc d d E B Y k n n→ + →∞ → + = − +       ∑ 0 0 1 2 0 1 1 2 1 1 1 1 ε π ε + + 1 2 1 1 1 1 1 1 1 1 2 1 2 π ε ε Lr c d d n n n L n n c d d+    − + − +    ∗( , ) ln( ) ( , ) ln( )/ / + + ( ( ) ( )) ( ) ln( ) ( ) ln( )/ / c n c n c n c n 2 3 4 1 1 + + +  ε ε = E B Y s ds1 1 2 0 1 det ( ( ))∫ π . (49) By using the same arguments, one can show that lim lnε ε ε → +0 1 CY ≥ 1 2 1 0 1 π E B Y s ds det ( ( ))∫ . (50) The inequalities (49), (50) imply that CY ε ∼ E B Y s ds1 1 2 1 0 1 det ( ( )) ln∫ π ε , ε → 0 + . ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11 1498 O. L. IZYUMTSEVA Theorem is proved. Remark. In this paper, we have investigated the asymptotic behavior of the con- stant of renormalization for self-intersection local times of planar diffusion process. The questions devoted to the existence of double self-intersections and self-intersecti- ons of order k, the asymptotical behavior of the constant of renormalization for self- intersection local times of diffusion process in k dimensions will be considered in fur- ther papers. 1. Wolpert R. L. Local time and a particle for Euclidian field theory // J. Func. Anal. – 1978. – 30. – P. 341 – 357. 2. Dynkin E. B. Regularized self intersection local times of planar Brownian motion // Ann. Probab. – 1988. – 16, # 1. – P. 58 – 74. 3. Le Gall J.-F. Fluctuation results for the Wiener sausage // Ann. Probab. – 1988. – 16. – P. 991 – 1018. 4. Rosen J. Dirichlet processes and an intrinsic characterization for renormalizaed intersection local times // Ann. Inst. H. Poincare. – 2001. – 37. – P. 403 – 420. 5. Rosen J. Continuity and singularity of the intersection local time of stable processes in R2 // Ann. Probab. – 1988. – 16. – P. 75 – 79. 6. Rosen J. Limit laws for the intersection local time of stable processes in R2 // Stochastics. – 1988. – 23. – P. 219 – 240. 7. Bass R. F., Khoshnevisan D. Intersection local times and Tanaka formulas // Ann. Inst. H. Poincare Prob. Stat. – 1993. – 29. – P. 419 – 452. 8. Chen, Xia. Self-intersection local times of additive processes: large deviation and law of the iterated logarithm // Stochastic Process. Appl. – 2006. – 9. – P. 1236 – 1253. 9. Liptser R., Shiryaev A. Statistics of random processes. – Berlin: Springer, 2001. – 427 p. 10. Friedman A. Partial differential equations of parabolic type. – Englewood Cliffs, New York: Prentice-Hall, Inc., 1964. – 347 p. Received 25.05.07 ISSN 1027-3190. Ukr. mat. Ωurn., 2008, t. 60, # 11