Bogolyubov averaging and normalization procedures in nonlinear mechanics. II
By using a new method suggested in the first part of the present work, we study systems which become linear in the zero approximation and have perturbations in the form of polynomials. This class of systems has numerous applications. The following fact is even more important: Our technique demonstra...
Збережено в:
Дата: | 1994 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
1994
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164800 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bogolyubov averaging and normalization procedures in nonlinear mechanics. II / Yu.A. Mitropolsky, A.K. Lopatin // Український математичний журнал. — 1994. — Т. 46, № 11. — С. 1509–1526. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | By using a new method suggested in the first part of the present work, we study systems which become linear in the zero approximation and have perturbations in the form of polynomials. This class of systems has numerous applications. The following fact is even more important: Our technique demonstrates how to generalize the classical method of Poincaré-Birkhoff normal forms and obtain new results by using group-theoretic methods. After a short exposition of the general theory of the method of asymptotic decomposition, we illustrate the new normalization technique as applied to models based on the Lotka-Volterra equations. |
---|