Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека

Вивчається поведінка мір, які є результатом дії пігрупи Орнштейна - Улеибека Tt, що пов'язана з гауссовою мірою μ, на довільну ймовірнісну міру ν у сепарабельному гільбертовому просторі, при t→0+. Доведено, що щільності абсолютно неперервних частин Ttν по відношенню до μ збігаються за мірою |і...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
1. Verfasser: Руденко, А.В.
Format: Artikel
Sprache:Russian
Veröffentlicht: Інститут математики НАН України 2004
Schriftenreihe:Український математичний журнал
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/164847
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека / А.В. Руденко // Український математичний журнал. — 2004. — Т. 56, № 12. — С. 1654-1664. — Бібліогр.: 4 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-164847
record_format dspace
fulltext 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 0080
spelling irk-123456789-1648472020-02-11T01:27:43Z Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека Руденко, А.В. Статті Вивчається поведінка мір, які є результатом дії пігрупи Орнштейна - Улеибека Tt, що пов'язана з гауссовою мірою μ, на довільну ймовірнісну міру ν у сепарабельному гільбертовому просторі, при t→0+. Доведено, що щільності абсолютно неперервних частин Ttν по відношенню до μ збігаються за мірою |і до щільності абсолютно неперервної частини V по підношенню до μ. У випадку скінченної вимірності простору доведено збіжність цих щільпостей μ-майже скрізь. У нескіпченновимірному випадку наведено деякі достатні умови для збіжності майже скрізь. Також розглянуто умови па абсолютну неперервність Ttν по відношенню до μ. у термінах коефіцієнтів розкладу Ttν в ряд за поліномами Ерміта (аналог розкладу Іто - Вінера) та зв'язок з фінітною абсолютною неперервністю. We study the behavior of measures obtained as a result of the action of the Ornstein-Uhlenbeck semigroup T t associated with the Gaussian measure μ on an arbitrary probability measure ν in a separable Hilbert space as t → 0+. We prove that the densities of the parts of T t ν absolutely continuous with respect to μ converge in the measure μ to the density of the part of ν absolutely continuous with respect to μ. For a finite-dimensional space, we prove the convergence of these densities μ-almost everywhere. In the infinite-dimensional case, we give sufficient conditions for almost-everywhere convergence. We also consider conditions on the absolute continuity of T t ν with respect to μ in terms of the coefficients of the expansion of T t ν in a series in Hermite polynomials (an analog of the Ito- Wiener expansion) and the connection with finite absolute continuity. 2004 Article Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека / А.В. Руденко // Український математичний журнал. — 2004. — Т. 56, № 12. — С. 1654-1664. — Бібліогр.: 4 назв. — рос. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/164847 519.21 ru Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language Russian
topic Статті
Статті
spellingShingle Статті
Статті
Руденко, А.В.
Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека
Український математичний журнал
description Вивчається поведінка мір, які є результатом дії пігрупи Орнштейна - Улеибека Tt, що пов'язана з гауссовою мірою μ, на довільну ймовірнісну міру ν у сепарабельному гільбертовому просторі, при t→0+. Доведено, що щільності абсолютно неперервних частин Ttν по відношенню до μ збігаються за мірою |і до щільності абсолютно неперервної частини V по підношенню до μ. У випадку скінченної вимірності простору доведено збіжність цих щільпостей μ-майже скрізь. У нескіпченновимірному випадку наведено деякі достатні умови для збіжності майже скрізь. Також розглянуто умови па абсолютну неперервність Ttν по відношенню до μ. у термінах коефіцієнтів розкладу Ttν в ряд за поліномами Ерміта (аналог розкладу Іто - Вінера) та зв'язок з фінітною абсолютною неперервністю.
format Article
author Руденко, А.В.
author_facet Руденко, А.В.
author_sort Руденко, А.В.
title Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека
title_short Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека
title_full Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека
title_fullStr Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека
title_full_unstemmed Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека
title_sort приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы орнштейна — уленбека
publisher Інститут математики НАН України
publishDate 2004
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/164847
citation_txt Приближение плотностей абсолютно непрерывных компонент мер и гильбертовом пространстве с помощью полугруппы Орнштейна — Уленбека / А.В. Руденко // Український математичний журнал. — 2004. — Т. 56, № 12. — С. 1654-1664. — Бібліогр.: 4 назв. — рос.
series Український математичний журнал
work_keys_str_mv AT rudenkoav približenieplotnostejabsolûtnonepreryvnyhkomponentmerigilʹbertovomprostranstvespomoŝʹûpolugruppyornštejnaulenbeka
first_indexed 2025-07-14T17:31:24Z
last_indexed 2025-07-14T17:31:24Z
_version_ 1837644418615607296