Bogolyubov averaging and normalization procedures in nonlinear mechanics. III

We describe the technique of normalization based on the method of asymptotic decomposition in the space of representation of a finite-dimensional Lie group. The main topics of the theory necessary for understanding the method are outlined. Models based on the Van der Pol equation are investigated by...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1994
Автори: Mitropolsky, Yu.A., Lopatin, A.K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1994
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164934
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bogolyubov averaging and normalization procedures in nonlinear mechanics. III / Yu.A. Mitropolsky, A.K. Lopatin // Український математичний журнал. — 1994. — Т. 46, № 12. — С. 1627–1646. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We describe the technique of normalization based on the method of asymptotic decomposition in the space of representation of a finite-dimensional Lie group. The main topics of the theory necessary for understanding the method are outlined. Models based on the Van der Pol equation are investigated by the method of asymptotic decomposition in the space of homogeneous polynomials (the space of representation of a general linear group in a plane) and in the space of representation of a rotation group on a plane (ordinary Fourier series). The comparison made shows a dramatic decrease in the necessary algebraic manipulations in the second case. We also discuss other details of the technique of normalization based on the method of asymptotic decomposition.