Bogolyubov averaging and normalization procedures in nonlinear mechanics. III
We describe the technique of normalization based on the method of asymptotic decomposition in the space of representation of a finite-dimensional Lie group. The main topics of the theory necessary for understanding the method are outlined. Models based on the Van der Pol equation are investigated by...
Збережено в:
Дата: | 1994 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
1994
|
Назва видання: | Український математичний журнал |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/164934 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Bogolyubov averaging and normalization procedures in nonlinear mechanics. III / Yu.A. Mitropolsky, A.K. Lopatin // Український математичний журнал. — 1994. — Т. 46, № 12. — С. 1627–1646. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We describe the technique of normalization based on the method of asymptotic decomposition in the space of representation of a finite-dimensional Lie group. The main topics of the theory necessary for understanding the method are outlined. Models based on the Van der Pol equation are investigated by the method of asymptotic decomposition in the space of homogeneous polynomials (the space of representation of a general linear group in a plane) and in the space of representation of a rotation group on a plane (ordinary Fourier series). The comparison made shows a dramatic decrease in the necessary algebraic manipulations in the second case. We also discuss other details of the technique of normalization based on the method of asymptotic decomposition. |
---|