Littlewood–Paley theorem on spaces Lp(t)(ℝⁿ)

We point out that if the Hardy–Littlewood maximal operator is bounded on the space Lp(t)(ℝ), 1 < a ≤ p(t) ≤ b < ∞, t ∈ ℝ, then the well-known characterization of the spaces Lp(ℝ), 1 < p < ∞, by the Littlewood–Paley theory extends to the space L p(t)(ℝ). We show that, for n > 1 , the L...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Kopaliani, T.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/164982
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Littlewood–Paley theorem on spaces Lp(t)(ℝⁿ) / T.S. Kopaliani // Український математичний журнал. — 2008. — Т. 60, № 12. — С. 1709–1715. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We point out that if the Hardy–Littlewood maximal operator is bounded on the space Lp(t)(ℝ), 1 < a ≤ p(t) ≤ b < ∞, t ∈ ℝ, then the well-known characterization of the spaces Lp(ℝ), 1 < p < ∞, by the Littlewood–Paley theory extends to the space L p(t)(ℝ). We show that, for n > 1 , the Littlewood–Paley operator is bounded on Lp(t) (ℝⁿ), 1 < a ≤ p(t) ≤ b < ∞, t ∈ ℝⁿ, if and only if p(t) = const.