2025-02-22T21:03:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-165118%22&qt=morelikethis&rows=5
2025-02-22T21:03:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-165118%22&qt=morelikethis&rows=5
2025-02-22T21:03:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T21:03:20-05:00 DEBUG: Deserialized SOLR response

On two-dimensional model representations of one class of commuting operators

В данiй статтi одержано узагальнення результату, викладеного в у статтi Золотарьова В. О. „Про трикутнi моделi систем двiчi переставних операторiв” (Докл. АН АрмССР. – 1976. – 63, № 3. – С. 136 – 140), на випадок, коли область Ω модельного простору є компактом у R² , обмеженим прямими x = a, y =...

Full description

Saved in:
Bibliographic Details
Main Authors: Hatamleh, R., Zolotarev, V.A.
Format: Article
Language:English
Published: Інститут математики НАН України 2014
Series:Український математичний журнал
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/165118
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-165118
record_format dspace
spelling irk-123456789-1651182020-02-12T01:28:13Z On two-dimensional model representations of one class of commuting operators Hatamleh, R. Zolotarev, V.A. Статті В данiй статтi одержано узагальнення результату, викладеного в у статтi Золотарьова В. О. „Про трикутнi моделi систем двiчi переставних операторiв” (Докл. АН АрмССР. – 1976. – 63, № 3. – С. 136 – 140), на випадок, коли область Ω модельного простору є компактом у R² , обмеженим прямими x = a, y = b i спадною гладкою кривою L, що з’єднує точки (0, b) i (a, 0). 2014 Article On two-dimensional model representations of one class of commuting operators / R. Hatamleh, V. A. Zolotarev // Український математичний журнал. — 2014. — Т. 66, № 1. — С. 108–127. — Бібліогр.: 8 назв. — англ. 1027-3190 http://dspace.nbuv.gov.ua/handle/123456789/165118 517.9 en Український математичний журнал Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Hatamleh, R.
Zolotarev, V.A.
On two-dimensional model representations of one class of commuting operators
Український математичний журнал
description В данiй статтi одержано узагальнення результату, викладеного в у статтi Золотарьова В. О. „Про трикутнi моделi систем двiчi переставних операторiв” (Докл. АН АрмССР. – 1976. – 63, № 3. – С. 136 – 140), на випадок, коли область Ω модельного простору є компактом у R² , обмеженим прямими x = a, y = b i спадною гладкою кривою L, що з’єднує точки (0, b) i (a, 0).
format Article
author Hatamleh, R.
Zolotarev, V.A.
author_facet Hatamleh, R.
Zolotarev, V.A.
author_sort Hatamleh, R.
title On two-dimensional model representations of one class of commuting operators
title_short On two-dimensional model representations of one class of commuting operators
title_full On two-dimensional model representations of one class of commuting operators
title_fullStr On two-dimensional model representations of one class of commuting operators
title_full_unstemmed On two-dimensional model representations of one class of commuting operators
title_sort on two-dimensional model representations of one class of commuting operators
publisher Інститут математики НАН України
publishDate 2014
topic_facet Статті
url http://dspace.nbuv.gov.ua/handle/123456789/165118
citation_txt On two-dimensional model representations of one class of commuting operators / R. Hatamleh, V. A. Zolotarev // Український математичний журнал. — 2014. — Т. 66, № 1. — С. 108–127. — Бібліогр.: 8 назв. — англ.
series Український математичний журнал
work_keys_str_mv AT hatamlehr ontwodimensionalmodelrepresentationsofoneclassofcommutingoperators
AT zolotarevva ontwodimensionalmodelrepresentationsofoneclassofcommutingoperators
first_indexed 2023-10-18T22:15:19Z
last_indexed 2023-10-18T22:15:19Z
_version_ 1796155038825971712