D-Homothetic Deformation of Normal Almost Contact Metric Manifolds

The object of the present paper is to study a transformation called the D-homothetic deformation of normal almost contact metric manifolds. In particular, it is shown that, in a (2n+1)-dimensional normal almost contact metric manifold, the Ricci operator Q commutes with the structure tensor ϕ under...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: De, U.C., Ghosh, S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165250
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:D-Homothetic Deformation of Normal Almost Contact Metric Manifolds / U.C. De, S. Ghosh // Український математичний журнал. — 2012. — Т. 64, № 10. — С. 1330-1329. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The object of the present paper is to study a transformation called the D-homothetic deformation of normal almost contact metric manifolds. In particular, it is shown that, in a (2n+1)-dimensional normal almost contact metric manifold, the Ricci operator Q commutes with the structure tensor ϕ under certain conditions, and the operator Qϕ – ϕQ is invariant under a D-homothetic deformation. We also discuss the invariance of η-Einstein manifolds, ϕ-sectional curvature, and the local ϕ-Ricci symmetry under the D-homothetic deformation. Finally, we prove the existence of these manifolds by a concrete example.